# Maps from small to large precategories ```agda module category-theory.maps-from-small-to-large-precategories where ``` <details><summary>Imports</summary> ```agda open import category-theory.large-precategories open import category-theory.maps-precategories open import category-theory.precategories open import foundation.equivalences open import foundation.identity-types open import foundation.torsorial-type-families open import foundation.universe-levels ``` </details> ## Idea A **map** from a [(small) precategory](category-theory.precategories.md) `C` to a [large precategory](category-theory.large-precategories.md) `D` consists of: - a map `F₀ : C → D` on objects at a chosen universe level `γ`, - a map `F₁ : hom x y → hom (F₀ x) (F₀ y)` on morphisms. ## Definition ```agda module _ {l1 l2 : Level} {α : Level → Level} {β : Level → Level → Level} (C : Precategory l1 l2) (D : Large-Precategory α β) where map-Small-Large-Precategory : (γ : Level) → UU (l1 ⊔ l2 ⊔ α γ ⊔ β γ γ) map-Small-Large-Precategory γ = map-Precategory C (precategory-Large-Precategory D γ) obj-map-Small-Large-Precategory : {γ : Level} → map-Small-Large-Precategory γ → obj-Precategory C → obj-Large-Precategory D γ obj-map-Small-Large-Precategory {γ} = obj-map-Precategory C (precategory-Large-Precategory D γ) hom-map-Small-Large-Precategory : {γ : Level} → (F : map-Small-Large-Precategory γ) → { X Y : obj-Precategory C} → hom-Precategory C X Y → hom-Large-Precategory D ( obj-map-Small-Large-Precategory F X) ( obj-map-Small-Large-Precategory F Y) hom-map-Small-Large-Precategory {γ} = hom-map-Precategory C (precategory-Large-Precategory D γ) ``` ## Properties ### Characterization of equality of maps from small to large precategories ```agda module _ {l1 l2 γ : Level} {α : Level → Level} {β : Level → Level → Level} (C : Precategory l1 l2) (D : Large-Precategory α β) where htpy-map-Small-Large-Precategory : (f g : map-Small-Large-Precategory C D γ) → UU (l1 ⊔ l2 ⊔ α γ ⊔ β γ γ) htpy-map-Small-Large-Precategory = htpy-map-Precategory C (precategory-Large-Precategory D γ) htpy-eq-map-Small-Large-Precategory : (f g : map-Small-Large-Precategory C D γ) → (f = g) → htpy-map-Small-Large-Precategory f g htpy-eq-map-Small-Large-Precategory = htpy-eq-map-Precategory C (precategory-Large-Precategory D γ) is-torsorial-htpy-map-Small-Large-Precategory : (f : map-Small-Large-Precategory C D γ) → is-torsorial (htpy-map-Small-Large-Precategory f) is-torsorial-htpy-map-Small-Large-Precategory = is-torsorial-htpy-map-Precategory C (precategory-Large-Precategory D γ) is-equiv-htpy-eq-map-Small-Large-Precategory : (f g : map-Small-Large-Precategory C D γ) → is-equiv (htpy-eq-map-Small-Large-Precategory f g) is-equiv-htpy-eq-map-Small-Large-Precategory = is-equiv-htpy-eq-map-Precategory C (precategory-Large-Precategory D γ) equiv-htpy-eq-map-Small-Large-Precategory : (f g : map-Small-Large-Precategory C D γ) → (f = g) ≃ htpy-map-Small-Large-Precategory f g equiv-htpy-eq-map-Small-Large-Precategory = equiv-htpy-eq-map-Precategory C (precategory-Large-Precategory D γ) eq-htpy-map-Small-Large-Precategory : (f g : map-Small-Large-Precategory C D γ) → htpy-map-Small-Large-Precategory f g → (f = g) eq-htpy-map-Small-Large-Precategory = eq-htpy-map-Precategory C (precategory-Large-Precategory D γ) ``` ## See also - [Functors from small to large precategories](category-theory.functors-from-small-to-large-precategories.md) - [The precategory of maps and natural transformations from small to large precategories](category-theory.precategory-of-maps-from-small-to-large-precategories.md)