# Maps from small to large precategories

```agda
module category-theory.maps-from-small-to-large-precategories where
```

<details><summary>Imports</summary>

```agda
open import category-theory.large-precategories
open import category-theory.maps-precategories
open import category-theory.precategories

open import foundation.equivalences
open import foundation.identity-types
open import foundation.torsorial-type-families
open import foundation.universe-levels
```

</details>

## Idea

A **map** from a [(small) precategory](category-theory.precategories.md) `C` to
a [large precategory](category-theory.large-precategories.md) `D` consists of:

- a map `F₀ : C → D` on objects at a chosen universe level `γ`,
- a map `F₁ : hom x y → hom (F₀ x) (F₀ y)` on morphisms.

## Definition

```agda
module _
  {l1 l2 : Level} {α : Level  Level} {β : Level  Level  Level}
  (C : Precategory l1 l2) (D : Large-Precategory α β)
  where

  map-Small-Large-Precategory : (γ : Level)  UU (l1  l2  α γ  β γ γ)
  map-Small-Large-Precategory γ =
    map-Precategory C (precategory-Large-Precategory D γ)

  obj-map-Small-Large-Precategory :
    {γ : Level}  map-Small-Large-Precategory γ 
    obj-Precategory C  obj-Large-Precategory D γ
  obj-map-Small-Large-Precategory {γ} =
    obj-map-Precategory C (precategory-Large-Precategory D γ)

  hom-map-Small-Large-Precategory :
    {γ : Level} 
    (F : map-Small-Large-Precategory γ) 
    { X Y : obj-Precategory C} 
    hom-Precategory C X Y 
    hom-Large-Precategory D
      ( obj-map-Small-Large-Precategory F X)
      ( obj-map-Small-Large-Precategory F Y)
  hom-map-Small-Large-Precategory {γ} =
    hom-map-Precategory C (precategory-Large-Precategory D γ)
```

## Properties

### Characterization of equality of maps from small to large precategories

```agda
module _
  {l1 l2 γ : Level} {α : Level  Level} {β : Level  Level  Level}
  (C : Precategory l1 l2) (D : Large-Precategory α β)
  where

  htpy-map-Small-Large-Precategory :
    (f g : map-Small-Large-Precategory C D γ)  UU (l1  l2  α γ  β γ γ)
  htpy-map-Small-Large-Precategory =
    htpy-map-Precategory C (precategory-Large-Precategory D γ)

  htpy-eq-map-Small-Large-Precategory :
    (f g : map-Small-Large-Precategory C D γ) 
    (f  g)  htpy-map-Small-Large-Precategory f g
  htpy-eq-map-Small-Large-Precategory =
    htpy-eq-map-Precategory C (precategory-Large-Precategory D γ)

  is-torsorial-htpy-map-Small-Large-Precategory :
    (f : map-Small-Large-Precategory C D γ) 
    is-torsorial (htpy-map-Small-Large-Precategory f)
  is-torsorial-htpy-map-Small-Large-Precategory =
    is-torsorial-htpy-map-Precategory C (precategory-Large-Precategory D γ)

  is-equiv-htpy-eq-map-Small-Large-Precategory :
    (f g : map-Small-Large-Precategory C D γ) 
    is-equiv (htpy-eq-map-Small-Large-Precategory f g)
  is-equiv-htpy-eq-map-Small-Large-Precategory =
    is-equiv-htpy-eq-map-Precategory C (precategory-Large-Precategory D γ)

  equiv-htpy-eq-map-Small-Large-Precategory :
    (f g : map-Small-Large-Precategory C D γ) 
    (f  g)  htpy-map-Small-Large-Precategory f g
  equiv-htpy-eq-map-Small-Large-Precategory =
    equiv-htpy-eq-map-Precategory C (precategory-Large-Precategory D γ)

  eq-htpy-map-Small-Large-Precategory :
    (f g : map-Small-Large-Precategory C D γ) 
    htpy-map-Small-Large-Precategory f g  (f  g)
  eq-htpy-map-Small-Large-Precategory =
    eq-htpy-map-Precategory C (precategory-Large-Precategory D γ)
```

## See also

- [Functors from small to large precategories](category-theory.functors-from-small-to-large-precategories.md)
- [The precategory of maps and natural transformations from small to large precategories](category-theory.precategory-of-maps-from-small-to-large-precategories.md)