# The type of natural numbers ```agda module elementary-number-theory.natural-numbers where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation-core.empty-types open import foundation-core.identity-types open import foundation-core.injective-maps open import foundation-core.negation ``` </details> ## Idea The **natural numbers** is an inductively generated type by the zero element and the successor function. The induction principle for the natural numbers works to construct sections of type families over the natural numbers. ## Definitions ### The inductive definition of the type of natural numbers ```agda data ℕ : UU lzero where zero-ℕ : ℕ succ-ℕ : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} ``` ### Useful predicates on the natural numbers These predicates can of course be asserted directly without much trouble. However, using the defined predicates ensures uniformity, and helps naming definitions. ```agda is-zero-ℕ : ℕ → UU lzero is-zero-ℕ n = (n = zero-ℕ) is-zero-ℕ' : ℕ → UU lzero is-zero-ℕ' n = (zero-ℕ = n) is-successor-ℕ : ℕ → UU lzero is-successor-ℕ n = Σ ℕ (λ y → n = succ-ℕ y) is-nonzero-ℕ : ℕ → UU lzero is-nonzero-ℕ n = ¬ (is-zero-ℕ n) is-one-ℕ : ℕ → UU lzero is-one-ℕ n = (n = 1) is-one-ℕ' : ℕ → UU lzero is-one-ℕ' n = (1 = n) is-not-one-ℕ : ℕ → UU lzero is-not-one-ℕ n = ¬ (is-one-ℕ n) is-not-one-ℕ' : ℕ → UU lzero is-not-one-ℕ' n = ¬ (is-one-ℕ' n) ``` ## Properties ### The induction principle of ℕ ```agda ind-ℕ : {l : Level} {P : ℕ → UU l} → P 0 → ((n : ℕ) → P n → P (succ-ℕ n)) → ((n : ℕ) → P n) ind-ℕ p-zero p-succ 0 = p-zero ind-ℕ p-zero p-succ (succ-ℕ n) = p-succ n (ind-ℕ p-zero p-succ n) ``` ### The recursion principle of ℕ ```agda rec-ℕ : {l : Level} {A : UU l} → A → (ℕ → A → A) → (ℕ → A) rec-ℕ = ind-ℕ ``` ### The successor function on ℕ is injective ```agda is-injective-succ-ℕ : is-injective succ-ℕ is-injective-succ-ℕ refl = refl ``` ### Successors are nonzero ```agda is-nonzero-succ-ℕ : (x : ℕ) → is-nonzero-ℕ (succ-ℕ x) is-nonzero-succ-ℕ x () is-nonzero-is-successor-ℕ : {x : ℕ} → is-successor-ℕ x → is-nonzero-ℕ x is-nonzero-is-successor-ℕ (x , refl) () is-successor-is-nonzero-ℕ : {x : ℕ} → is-nonzero-ℕ x → is-successor-ℕ x is-successor-is-nonzero-ℕ {zero-ℕ} H = ex-falso (H refl) pr1 (is-successor-is-nonzero-ℕ {succ-ℕ x} H) = x pr2 (is-successor-is-nonzero-ℕ {succ-ℕ x} H) = refl has-no-fixed-points-succ-ℕ : (x : ℕ) → ¬ (succ-ℕ x = x) has-no-fixed-points-succ-ℕ x () ``` ### Basic nonequalities ```agda is-nonzero-one-ℕ : is-nonzero-ℕ 1 is-nonzero-one-ℕ () is-not-one-zero-ℕ : is-not-one-ℕ zero-ℕ is-not-one-zero-ℕ () is-nonzero-two-ℕ : is-nonzero-ℕ 2 is-nonzero-two-ℕ () is-not-one-two-ℕ : is-not-one-ℕ 2 is-not-one-two-ℕ () ``` ## See also - The based induction principle is defined in [`based-induction-natural-numbers`](elementary-number-theory.based-induction-natural-numbers.md). - The strong induction principle is defined in [`strong-induction-natural-numbers`](elementary-number-theory.strong-induction-natural-numbers.md). - The based strong induction principle is defined in [`based-strong-induction-natural-numbers`](elementary-number-theory.based-strong-induction-natural-numbers.md).