# The action on identifications of functions

```agda
module foundation.action-on-identifications-functions where
```

<details><summary>Imports</summary>

```agda
open import foundation.universe-levels

open import foundation-core.constant-maps
open import foundation-core.function-types
open import foundation-core.identity-types
```

</details>

## Idea

Any function `f : A → B` preserves
[identifications](foundation-core.identity-types.md), in the sense that it maps
identifications `p : x = y` in `A` to an identification `ap f p : f x = f y`
in `B`. This action on identifications can be thought of as the functoriality of
identity types.

## Definition

### The functorial action of functions on identity types

```agda
ap :
  {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A  B) {x y : A} 
  x  y  (f x)  (f y)
ap f refl = refl
```

## Properties

### The identity function acts trivially on identifications

```agda
ap-id :
  {l : Level} {A : UU l} {x y : A} (p : x  y)  (ap id p)  p
ap-id refl = refl
```

### The action on identifications of a composite function is the composite of the actions

```agda
ap-comp :
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} (g : B  C)
  (f : A  B) {x y : A} (p : x  y)  (ap (g  f) p)  ((ap g  ap f) p)
ap-comp g f refl = refl
```

### The action on identifications of any map preserves `refl`

```agda
ap-refl :
  {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A  B) (x : A) 
  (ap f (refl {x = x}))  refl
ap-refl f x = refl
```

### The action on identifications of any map preserves concatenation of identifications

```agda
ap-concat :
  {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A  B) {x y z : A}
  (p : x  y) (q : y  z)  (ap f (p  q))  ((ap f p)  (ap f q))
ap-concat f refl q = refl

ap-concat-eq :
  {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A  B) {x y z : A}
  (p : x  y) (q : y  z) (r : x  z)
  (H : r  (p  q))  (ap f r)  ((ap f p)  (ap f q))
ap-concat-eq f p q .(p  q) refl = ap-concat f p q
```

### The action on identifications of any map preserves inverses

```agda
ap-inv :
  {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A  B) {x y : A}
  (p : x  y)  ap f (inv p)  inv (ap f p)
ap-inv f refl = refl
```

### The action on identifications of a constant map is constant

```agda
ap-const :
  {l1 l2 : Level} {A : UU l1} {B : UU l2} (b : B) {x y : A}
  (p : x  y)  (ap (const A B b) p)  refl
ap-const b refl = refl
```

### The action on identifications of concatenating by `refl` on the right

Note that `_∙ refl` is only homotopic to the identity function. Therefore we
will compute here the action on identifications of the map `_∙ refl`.

```agda
inv-ap-refl-concat :
  {l : Level} {A : UU l} {x y : A} {p q : x  y} (r : p  q) 
  (right-unit  (r  inv right-unit))  (ap (_∙ refl) r)
inv-ap-refl-concat refl = right-inv right-unit

ap-refl-concat :
  {l : Level} {A : UU l} {x y : A} {p q : x  y} (r : p  q) 
  (ap (_∙ refl) r)  (right-unit  (r  inv right-unit))
ap-refl-concat = inv  inv-ap-refl-concat
```