# Binary equivalences

```agda
module foundation.binary-equivalences where
```

<details><summary>Imports</summary>

```agda
open import foundation.dependent-pair-types
open import foundation.universe-levels

open import foundation-core.cartesian-product-types
open import foundation-core.equivalences
```

</details>

## Idea

A binary operation `f : A → B → C` is said to be a binary equivalence if the
functions `λ x → f x b` and `λ y → f a y` are equivalences for each `a : A` and
`b : B` respectively.

## Definitions

```agda
fix-left :
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} (f : A  B  C) 
  A  B  C
fix-left f a = f a

fix-right :
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} (f : A  B  C) 
  B  A  C
fix-right f b a = f a b

is-binary-equiv :
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} 
  (A  B  C)  UU (l1  l2  l3)
is-binary-equiv {A = A} {B = B} f =
  ((b : B)  is-equiv (fix-right f b)) × ((a : A)  is-equiv (fix-left f a))

is-equiv-fix-left :
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} (f : A  B  C) 
  is-binary-equiv f  {a : A}  is-equiv (fix-left f a)
is-equiv-fix-left f H {a} = pr2 H a

is-equiv-fix-right :
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} (f : A  B  C) 
  is-binary-equiv f  {b : B}  is-equiv (fix-right f b)
is-equiv-fix-right f H {b} = pr1 H b
```