# Binary equivalences ```agda module foundation.binary-equivalences where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation-core.cartesian-product-types open import foundation-core.equivalences ``` </details> ## Idea A binary operation `f : A → B → C` is said to be a binary equivalence if the functions `λ x → f x b` and `λ y → f a y` are equivalences for each `a : A` and `b : B` respectively. ## Definitions ```agda fix-left : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} (f : A → B → C) → A → B → C fix-left f a = f a fix-right : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} (f : A → B → C) → B → A → C fix-right f b a = f a b is-binary-equiv : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} → (A → B → C) → UU (l1 ⊔ l2 ⊔ l3) is-binary-equiv {A = A} {B = B} f = ((b : B) → is-equiv (fix-right f b)) × ((a : A) → is-equiv (fix-left f a)) is-equiv-fix-left : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} (f : A → B → C) → is-binary-equiv f → {a : A} → is-equiv (fix-left f a) is-equiv-fix-left f H {a} = pr2 H a is-equiv-fix-right : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} (f : A → B → C) → is-binary-equiv f → {b : B} → is-equiv (fix-right f b) is-equiv-fix-right f H {b} = pr1 H b ```