# Hilbert's `ε`-operators

```agda
module foundation.hilberts-epsilon-operators where
```

<details><summary>Imports</summary>

```agda
open import foundation.functoriality-propositional-truncation
open import foundation.propositional-truncations
open import foundation.universe-levels

open import foundation-core.equivalences
open import foundation-core.function-types
```

</details>

## Idea

Hilbert's $ε$-operator at a type `A` is a map `type-trunc-Prop A → A`. Contrary
to Hilbert, we will not assume that such an operator exists for each type `A`.

## Definition

```agda
ε-operator-Hilbert : {l : Level}  UU l  UU l
ε-operator-Hilbert A = type-trunc-Prop A  A
```

## Properties

### The existence of Hilbert's `ε`-operators is invariant under equivalences

```agda
ε-operator-equiv :
  {l1 l2 : Level} {X : UU l1} {Y : UU l2} (e : X  Y) 
  ε-operator-Hilbert X  ε-operator-Hilbert Y
ε-operator-equiv e f =
  (map-equiv e  f)  (map-trunc-Prop (map-inv-equiv e))

ε-operator-equiv' :
  {l1 l2 : Level} {X : UU l1} {Y : UU l2} (e : X  Y) 
  ε-operator-Hilbert Y  ε-operator-Hilbert X
ε-operator-equiv' e f =
  (map-inv-equiv e  f)  (map-trunc-Prop (map-equiv e))
```