# Split surjective maps ```agda module foundation.split-surjective-maps where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation-core.cartesian-product-types open import foundation-core.equivalences open import foundation-core.fibers-of-maps open import foundation-core.function-types open import foundation-core.injective-maps open import foundation-core.retractions open import foundation-core.sections open import foundation-core.type-theoretic-principle-of-choice ``` </details> ## Idea A map `f : A → B` is split surjective if we can construct for every `b : B` an element in the fiber of `b`, meaning an element `a : A` equipped with an identification `f a = b`. ## Warning Note that split-surjectiveness is the Curry-Howard interpretation of surjectiveness. However, this is not a property, and the split surjective maps don't fit in a factorization system along with the injective maps. ## Definition ### Split surjective maps ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where is-split-surjective : (A → B) → UU (l1 ⊔ l2) is-split-surjective f = (b : B) → fiber f b split-surjection : UU (l1 ⊔ l2) split-surjection = Σ (A → B) is-split-surjective map-split-surjection : split-surjection → (A → B) map-split-surjection = pr1 is-split-surjective-split-surjection : (f : split-surjection) → is-split-surjective (map-split-surjection f) is-split-surjective-split-surjection = pr2 ``` ## Properties ### Split surjections are equivalent to maps equipped with a section ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where section-is-split-surjective : is-split-surjective f → section f pr1 (section-is-split-surjective s) = pr1 ∘ s pr2 (section-is-split-surjective s) = pr2 ∘ s is-split-surjective-section : section f → is-split-surjective f pr1 (is-split-surjective-section s b) = pr1 s b pr2 (is-split-surjective-section s b) = pr2 s b equiv-section-is-split-surjective : is-split-surjective f ≃ section f equiv-section-is-split-surjective = distributive-Π-Σ equiv-is-split-surjective-section : section f ≃ is-split-surjective f equiv-is-split-surjective-section = inv-distributive-Π-Σ ``` ### A map is an equivalence if and only if it is injective and split surjective ```agda module _ {l1 l2 : Level} {X : UU l1} {Y : UU l2} (f : X → Y) where retraction-is-split-surjective-is-injective : is-injective f → is-split-surjective f → retraction f pr1 (retraction-is-split-surjective-is-injective l s) = pr1 ∘ s pr2 (retraction-is-split-surjective-is-injective l s) = l ∘ (pr2 ∘ (s ∘ f)) is-equiv-is-split-surjective-is-injective : is-injective f → is-split-surjective f → is-equiv f pr1 (is-equiv-is-split-surjective-is-injective l s) = section-is-split-surjective f s pr2 (is-equiv-is-split-surjective-is-injective l s) = retraction-is-split-surjective-is-injective l s is-split-surjective-is-equiv : is-equiv f → is-split-surjective f is-split-surjective-is-equiv = is-split-surjective-section f ∘ pr1 is-split-surjective-is-injective-is-equiv : is-equiv f → is-injective f × is-split-surjective f pr1 (is-split-surjective-is-injective-is-equiv is-equiv-f) = is-injective-is-equiv is-equiv-f pr2 (is-split-surjective-is-injective-is-equiv is-equiv-f) = is-split-surjective-is-equiv is-equiv-f ```