# Univalent type families ```agda module foundation.univalent-type-families where ``` <details><summary>Imports</summary> ```agda open import foundation.transport-along-identifications open import foundation.universe-levels open import foundation-core.equivalences open import foundation-core.identity-types ``` </details> ## Idea A type family `B` over `A` is said to be univalent if the map ```text equiv-tr : (Id x y) → (B x ≃ B y) ``` is an equivalence for every `x y : A`. ## Definition ```agda is-univalent : {l1 l2 : Level} {A : UU l1} → (A → UU l2) → UU (l1 ⊔ l2) is-univalent {A = A} B = (x y : A) → is-equiv (λ (p : x = y) → equiv-tr B p) ```