{-# OPTIONS --without-K #-} open import foundation-core.truncated-types open import foundation-core.truncation-levels open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-extensionality open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.universe-levels module notation where ¦_¦ : ∀ {i j} {B : UU i → UU j} → Σ (UU i) B → UU i ¦_¦ = pr1 infix 150 _〈_〉 _〈_〉 : ∀ {i j k} {A : UU i} {B : A → UU j} {C : ((a : A) → B a) → UU k} → Σ ((a : A) → B a) C → (a : A) → B a f 〈 a 〉 = pr1 f a infix 140 _↓ _↓ : ∀ {i j} {B : UU i → UU j} → (x : Σ (UU i) B) → B ¦ x ¦ _↓ = pr2 infix 100 _==_ _==_ : ∀ {i} {A : UU i} → A → A → UU i x == y = Id x y open import trees.w-types renaming (Eq-𝕎 to _==W_) public W : ∀ {i j} (A : UU i) (B : A → UU j) → UU (i ⊔ j) W = 𝕎 pattern sup A f = tree-𝕎 A f open 𝕋 renaming (neg-two-𝕋 to neg-two-T ; succ-𝕋 to succ-T) TLevel = 𝕋 neg-one-T = neg-one-𝕋 zero-T = zero-𝕋 infix 105 _⁻¹ _⁻¹ : ∀ {i j} {A : UU i}{B : UU j} → A ≃ B → B ≃ A e ⁻¹ = inv-equiv e