# Functors between categories ```agda module category-theory.functors-categories where ``` <details><summary>Imports</summary> ```agda open import category-theory.categories open import category-theory.functors-precategories open import category-theory.isomorphisms-in-categories open import category-theory.maps-categories open import foundation.equivalences open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels ``` </details> ## Idea A **functor** between two [categories](category-theory.categories.md) is a [functor](category-theory.functors-precategories.md) between the underlying [precategories](category-theory.precategories.md). ## Definition ### The predicate of being a functor on maps between categories ```agda module _ {l1 l2 l3 l4 : Level} (C : Category l1 l2) (D : Category l3 l4) (F : map-Category C D) where preserves-comp-hom-map-Category : UU (l1 ⊔ l2 ⊔ l4) preserves-comp-hom-map-Category = preserves-comp-hom-map-Precategory ( precategory-Category C) ( precategory-Category D) ( F) preserves-id-hom-map-Category : UU (l1 ⊔ l4) preserves-id-hom-map-Category = preserves-id-hom-map-Precategory ( precategory-Category C) ( precategory-Category D) ( F) is-functor-map-Category : UU (l1 ⊔ l2 ⊔ l4) is-functor-map-Category = is-functor-map-Precategory ( precategory-Category C) ( precategory-Category D) ( F) preserves-comp-is-functor-map-Category : is-functor-map-Category → preserves-comp-hom-map-Category preserves-comp-is-functor-map-Category = preserves-comp-is-functor-map-Precategory ( precategory-Category C) ( precategory-Category D) ( F) preserves-id-is-functor-map-Category : is-functor-map-Category → preserves-id-hom-map-Category preserves-id-is-functor-map-Category = preserves-id-is-functor-map-Precategory ( precategory-Category C) ( precategory-Category D) ( F) ``` ### functors between categories ```agda module _ {l1 l2 l3 l4 : Level} (C : Category l1 l2) (D : Category l3 l4) where functor-Category : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) functor-Category = functor-Precategory (precategory-Category C) (precategory-Category D) obj-functor-Category : functor-Category → obj-Category C → obj-Category D obj-functor-Category = obj-functor-Precategory ( precategory-Category C) ( precategory-Category D) hom-functor-Category : (F : functor-Category) → {x y : obj-Category C} → (f : hom-Category C x y) → hom-Category D ( obj-functor-Category F x) ( obj-functor-Category F y) hom-functor-Category = hom-functor-Precategory ( precategory-Category C) ( precategory-Category D) map-functor-Category : functor-Category → map-Category C D map-functor-Category = map-functor-Precategory (precategory-Category C) (precategory-Category D) is-functor-functor-Category : (F : functor-Category) → is-functor-map-Category C D (map-functor-Category F) is-functor-functor-Category = is-functor-functor-Precategory ( precategory-Category C) ( precategory-Category D) preserves-comp-functor-Category : ( F : functor-Category) {x y z : obj-Category C} ( g : hom-Category C y z) (f : hom-Category C x y) → ( hom-functor-Category F (comp-hom-Category C g f)) = ( comp-hom-Category D ( hom-functor-Category F g) ( hom-functor-Category F f)) preserves-comp-functor-Category = preserves-comp-functor-Precategory ( precategory-Category C) ( precategory-Category D) preserves-id-functor-Category : (F : functor-Category) (x : obj-Category C) → hom-functor-Category F (id-hom-Category C {x}) = id-hom-Category D {obj-functor-Category F x} preserves-id-functor-Category = preserves-id-functor-Precategory ( precategory-Category C) ( precategory-Category D) ``` ## Examples ### The identity functor There is an identity functor on any category. ```agda id-functor-Category : {l1 l2 : Level} (C : Category l1 l2) → functor-Category C C id-functor-Category C = id-functor-Precategory (precategory-Category C) ``` ### Composition of functors Any two compatible functors can be composed to a new functor. ```agda comp-functor-Category : {l1 l2 l3 l4 l5 l6 : Level} (C : Category l1 l2) (D : Category l3 l4) (E : Category l5 l6) → functor-Category D E → functor-Category C D → functor-Category C E comp-functor-Category C D E = comp-functor-Precategory ( precategory-Category C) ( precategory-Category D) ( precategory-Category E) ``` ## Properties ### Respecting identities and compositions are propositions This follows from the fact that the hom-types are [sets](foundation-core.sets.md). ```agda module _ {l1 l2 l3 l4 : Level} (C : Category l1 l2) (D : Category l3 l4) (F : map-Category C D) where is-prop-preserves-comp-hom-map-Category : is-prop (preserves-comp-hom-map-Category C D F) is-prop-preserves-comp-hom-map-Category = is-prop-preserves-comp-hom-map-Precategory ( precategory-Category C) ( precategory-Category D) ( F) preserves-comp-hom-prop-map-Category : Prop (l1 ⊔ l2 ⊔ l4) preserves-comp-hom-prop-map-Category = preserves-comp-hom-prop-map-Precategory ( precategory-Category C) ( precategory-Category D) ( F) is-prop-preserves-id-hom-map-Category : is-prop (preserves-id-hom-map-Category C D F) is-prop-preserves-id-hom-map-Category = is-prop-preserves-id-hom-map-Precategory ( precategory-Category C) ( precategory-Category D) ( F) preserves-id-hom-prop-map-Category : Prop (l1 ⊔ l4) preserves-id-hom-prop-map-Category = preserves-id-hom-prop-map-Precategory ( precategory-Category C) ( precategory-Category D) ( F) is-prop-is-functor-map-Category : is-prop (is-functor-map-Category C D F) is-prop-is-functor-map-Category = is-prop-is-functor-map-Precategory ( precategory-Category C) ( precategory-Category D) ( F) is-functor-prop-map-Category : Prop (l1 ⊔ l2 ⊔ l4) is-functor-prop-map-Category = is-functor-prop-map-Precategory ( precategory-Category C) ( precategory-Category D) ( F) ``` ### Extensionality of functors between categories #### Equality of functors is equality of underlying maps ```agda module _ {l1 l2 l3 l4 : Level} (C : Category l1 l2) (D : Category l3 l4) (F G : functor-Category C D) where equiv-eq-map-eq-functor-Category : (F = G) ≃ (map-functor-Category C D F = map-functor-Category C D G) equiv-eq-map-eq-functor-Category = equiv-eq-map-eq-functor-Precategory ( precategory-Category C) ( precategory-Category D) ( F) ( G) eq-map-eq-functor-Category : (F = G) → (map-functor-Category C D F = map-functor-Category C D G) eq-map-eq-functor-Category = map-equiv equiv-eq-map-eq-functor-Category eq-eq-map-functor-Category : (map-functor-Category C D F = map-functor-Category C D G) → (F = G) eq-eq-map-functor-Category = map-inv-equiv equiv-eq-map-eq-functor-Category is-section-eq-eq-map-functor-Category : eq-map-eq-functor-Category ∘ eq-eq-map-functor-Category ~ id is-section-eq-eq-map-functor-Category = is-section-map-inv-equiv equiv-eq-map-eq-functor-Category is-retraction-eq-eq-map-functor-Category : eq-eq-map-functor-Category ∘ eq-map-eq-functor-Category ~ id is-retraction-eq-eq-map-functor-Category = is-retraction-map-inv-equiv equiv-eq-map-eq-functor-Category ``` #### Equality of functors is homotopy of underlying maps ```agda module _ {l1 l2 l3 l4 : Level} (C : Category l1 l2) (D : Category l3 l4) (F G : functor-Category C D) where htpy-functor-Category : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) htpy-functor-Category = htpy-functor-Precategory ( precategory-Category C) ( precategory-Category D) ( F) ( G) equiv-htpy-eq-functor-Category : (F = G) ≃ htpy-functor-Category equiv-htpy-eq-functor-Category = equiv-htpy-eq-functor-Precategory ( precategory-Category C) ( precategory-Category D) ( F) ( G) htpy-eq-functor-Category : F = G → htpy-functor-Category htpy-eq-functor-Category = map-equiv equiv-htpy-eq-functor-Category eq-htpy-functor-Category : htpy-functor-Category → F = G eq-htpy-functor-Category = map-inv-equiv equiv-htpy-eq-functor-Category is-section-eq-htpy-functor-Category : htpy-eq-functor-Category ∘ eq-htpy-functor-Category ~ id is-section-eq-htpy-functor-Category = is-section-map-inv-equiv equiv-htpy-eq-functor-Category is-retraction-eq-htpy-functor-Category : eq-htpy-functor-Category ∘ htpy-eq-functor-Category ~ id is-retraction-eq-htpy-functor-Category = is-retraction-map-inv-equiv equiv-htpy-eq-functor-Category ``` ### Functors preserve isomorphisms ```agda module _ {l1 l2 l3 l4 : Level} (C : Category l1 l2) (D : Category l3 l4) (F : functor-Category C D) {x y : obj-Category C} where preserves-is-iso-functor-Category : (f : hom-Category C x y) → is-iso-Category C f → is-iso-Category D (hom-functor-Category C D F f) preserves-is-iso-functor-Category = preserves-is-iso-functor-Precategory ( precategory-Category C) ( precategory-Category D) ( F) preserves-iso-functor-Category : iso-Category C x y → iso-Category D ( obj-functor-Category C D F x) ( obj-functor-Category C D F y) preserves-iso-functor-Category = preserves-iso-functor-Precategory ( precategory-Category C) ( precategory-Category D) ( F) ``` ## See also - [The category of functors and natural transformations between categories](category-theory.category-of-functors.md)