# Homotopies ```agda module foundation-core.homotopies where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-dependent-functions open import foundation.action-on-identifications-functions open import foundation.commuting-squares-of-identifications open import foundation.universe-levels open import foundation-core.dependent-identifications open import foundation-core.function-types open import foundation-core.identity-types open import foundation-core.transport-along-identifications ``` </details> ## Idea A **homotopy** between dependent functions `f` and `g` is a pointwise equality between them. ## Definitions ### The type family of identifications between values of two dependent functions ```agda module _ {l1 l2 : Level} {X : UU l1} {P : X → UU l2} (f g : (x : X) → P x) where eq-value : X → UU l2 eq-value x = (f x = g x) {-# INLINE eq-value #-} map-compute-dependent-identification-eq-value : {x y : X} (p : x = y) (q : eq-value x) (r : eq-value y) → coherence-square-identifications (ap (tr P p) q) (apd f p) (apd g p) r → dependent-identification eq-value p q r map-compute-dependent-identification-eq-value refl q r = inv ∘ (concat' r (right-unit ∙ ap-id q)) ``` ### The type family of identifications between values of two ordinary functions ```agda module _ {l1 l2 : Level} {X : UU l1} {Y : UU l2} (f g : X → Y) where eq-value-function : X → UU l2 eq-value-function = eq-value f g {-# INLINE eq-value-function #-} map-compute-dependent-identification-eq-value-function : {x y : X} (p : x = y) (q : eq-value f g x) (r : eq-value f g y) → coherence-square-identifications q (ap f p) (ap g p) r → dependent-identification eq-value-function p q r map-compute-dependent-identification-eq-value-function refl q r = inv ∘ concat' r right-unit map-compute-dependent-identification-eq-value-id-id : {l1 : Level} {A : UU l1} {a b : A} (p : a = b) (q : a = a) (r : b = b) → coherence-square-identifications q p p r → dependent-identification (eq-value id id) p q r map-compute-dependent-identification-eq-value-id-id refl q r s = inv (s ∙ right-unit) map-compute-dependent-identification-eq-value-comp-id : {l1 l2 : Level} {A : UU l1} {B : UU l2} (g : B → A) (f : A → B) {a b : A} (p : a = b) (q : eq-value (g ∘ f) id a) (r : eq-value (g ∘ f) id b) → coherence-square-identifications q (ap g (ap f p)) p r → dependent-identification (eq-value (g ∘ f) id) p q r map-compute-dependent-identification-eq-value-comp-id g f refl q r s = inv (s ∙ right-unit) ``` ### Homotopies ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where infix 6 _~_ _~_ : (f g : (x : A) → B x) → UU (l1 ⊔ l2) f ~ g = (x : A) → eq-value f g x ``` ## Properties ### Reflexivity ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where refl-htpy : {f : (x : A) → B x} → f ~ f refl-htpy x = refl refl-htpy' : (f : (x : A) → B x) → f ~ f refl-htpy' f = refl-htpy ``` ### Inverting homotopies ```agda inv-htpy : {f g : (x : A) → B x} → f ~ g → g ~ f inv-htpy H x = inv (H x) ``` ### Concatenating homotopies ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where infixl 15 _∙h_ _∙h_ : {f g h : (x : A) → B x} → f ~ g → g ~ h → f ~ h (H ∙h K) x = (H x) ∙ (K x) concat-htpy : {f g : (x : A) → B x} → f ~ g → (h : (x : A) → B x) → g ~ h → f ~ h concat-htpy H h K x = concat (H x) (h x) (K x) concat-htpy' : (f : (x : A) → B x) {g h : (x : A) → B x} → g ~ h → f ~ g → f ~ h concat-htpy' f K H = H ∙h K concat-inv-htpy : {f g : (x : A) → B x} → f ~ g → (h : (x : A) → B x) → f ~ h → g ~ h concat-inv-htpy = concat-htpy ∘ inv-htpy concat-inv-htpy' : (f : (x : A) → B x) {g h : (x : A) → B x} → (g ~ h) → (f ~ h) → (f ~ g) concat-inv-htpy' f K = concat-htpy' f (inv-htpy K) ``` ### Transposition of homotopies ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g h : (x : A) → B x} (H : f ~ g) (K : g ~ h) (L : f ~ h) (M : (H ∙h K) ~ L) where left-transpose-htpy-concat : K ~ ((inv-htpy H) ∙h L) left-transpose-htpy-concat x = left-transpose-eq-concat (H x) (K x) (L x) (M x) inv-htpy-left-transpose-htpy-concat : ((inv-htpy H) ∙h L) ~ K inv-htpy-left-transpose-htpy-concat = inv-htpy left-transpose-htpy-concat right-transpose-htpy-concat : H ~ (L ∙h (inv-htpy K)) right-transpose-htpy-concat x = right-transpose-eq-concat (H x) (K x) (L x) (M x) inv-htpy-right-transpose-htpy-concat : (L ∙h (inv-htpy K)) ~ H inv-htpy-right-transpose-htpy-concat = inv-htpy right-transpose-htpy-concat ``` ### Associativity of concatenation of homotopies ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g h k : (x : A) → B x} (H : f ~ g) (K : g ~ h) (L : h ~ k) where assoc-htpy : ((H ∙h K) ∙h L) ~ (H ∙h (K ∙h L)) assoc-htpy x = assoc (H x) (K x) (L x) inv-htpy-assoc-htpy : (H ∙h (K ∙h L)) ~ ((H ∙h K) ∙h L) inv-htpy-assoc-htpy = inv-htpy assoc-htpy ``` ### Unit laws for homotopies ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g : (x : A) → B x} {H : f ~ g} where left-unit-htpy : (refl-htpy ∙h H) ~ H left-unit-htpy x = left-unit inv-htpy-left-unit-htpy : H ~ (refl-htpy ∙h H) inv-htpy-left-unit-htpy = inv-htpy left-unit-htpy right-unit-htpy : (H ∙h refl-htpy) ~ H right-unit-htpy x = right-unit inv-htpy-right-unit-htpy : H ~ (H ∙h refl-htpy) inv-htpy-right-unit-htpy = inv-htpy right-unit-htpy ``` ### Inverse laws for homotopies ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g : (x : A) → B x} (H : f ~ g) where left-inv-htpy : ((inv-htpy H) ∙h H) ~ refl-htpy left-inv-htpy = left-inv ∘ H inv-htpy-left-inv-htpy : refl-htpy ~ ((inv-htpy H) ∙h H) inv-htpy-left-inv-htpy = inv-htpy left-inv-htpy right-inv-htpy : (H ∙h (inv-htpy H)) ~ refl-htpy right-inv-htpy = right-inv ∘ H inv-htpy-right-inv-htpy : refl-htpy ~ (H ∙h (inv-htpy H)) inv-htpy-right-inv-htpy = inv-htpy right-inv-htpy ``` ### Distributivity of `inv` over `concat` for homotopies ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g h : (x : A) → B x} (H : f ~ g) (K : g ~ h) where distributive-inv-concat-htpy : (inv-htpy (H ∙h K)) ~ ((inv-htpy K) ∙h (inv-htpy H)) distributive-inv-concat-htpy x = distributive-inv-concat (H x) (K x) inv-htpy-distributive-inv-concat-htpy : ((inv-htpy K) ∙h (inv-htpy H)) ~ (inv-htpy (H ∙h K)) inv-htpy-distributive-inv-concat-htpy = inv-htpy distributive-inv-concat-htpy ``` ### Naturality of homotopies with respect to identifications ```agda nat-htpy : {l1 l2 : Level} {A : UU l1} {B : UU l2} {f g : A → B} (H : f ~ g) {x y : A} (p : x = y) → ((H x) ∙ (ap g p)) = ((ap f p) ∙ (H y)) nat-htpy H refl = right-unit inv-nat-htpy : {l1 l2 : Level} {A : UU l1} {B : UU l2} {f g : A → B} (H : f ~ g) {x y : A} (p : x = y) → ((ap f p) ∙ (H y)) = ((H x) ∙ (ap g p)) inv-nat-htpy H p = inv (nat-htpy H p) nat-htpy-id : {l : Level} {A : UU l} {f : A → A} (H : f ~ id) {x y : A} (p : x = y) → ((H x) ∙ p) = ((ap f p) ∙ (H y)) nat-htpy-id H refl = right-unit inv-nat-htpy-id : {l : Level} {A : UU l} {f : A → A} (H : f ~ id) {x y : A} (p : x = y) → ((ap f p) ∙ (H y)) = ((H x) ∙ p) inv-nat-htpy-id H p = inv (nat-htpy-id H p) ``` ### Homotopies preserve the laws of the action on identity types ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g h : (x : A) → B x} where ap-concat-htpy : (H : f ~ g) (K K' : g ~ h) → K ~ K' → (H ∙h K) ~ (H ∙h K') ap-concat-htpy H K K' L x = ap (concat (H x) (h x)) (L x) ap-concat-htpy' : (H H' : f ~ g) (K : g ~ h) → H ~ H' → (H ∙h K) ~ (H' ∙h K) ap-concat-htpy' H H' K L x = ap (concat' _ (K x)) (L x) module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g : (x : A) → B x} {H H' : f ~ g} where ap-inv-htpy : H ~ H' → (inv-htpy H) ~ (inv-htpy H') ap-inv-htpy K x = ap inv (K x) ``` ## Reasoning with homotopies Homotopies can be constructed by equational reasoning in the following way: ```text homotopy-reasoning f ~ g by htpy-1 ~ h by htpy-2 ~ i by htpy-3 ``` The homotopy obtained in this way is `htpy-1 ∙h (htpy-2 ∙h htpy-3)`, i.e., it is associated fully to the right. ```agda infixl 1 homotopy-reasoning_ infixl 0 step-homotopy-reasoning homotopy-reasoning_ : {l1 l2 : Level} {X : UU l1} {Y : X → UU l2} (f : (x : X) → Y x) → f ~ f homotopy-reasoning f = refl-htpy step-homotopy-reasoning : {l1 l2 : Level} {X : UU l1} {Y : X → UU l2} {f g : (x : X) → Y x} → (f ~ g) → (h : (x : X) → Y x) → (g ~ h) → (f ~ h) step-homotopy-reasoning p h q = p ∙h q syntax step-homotopy-reasoning p h q = p ~ h by q ``` ## See also - We postulate that homotopies characterize identifications of (dependent) functions in the file [`foundation.function-extensionality`](foundation.function-extensionality.md). - [Multivariable homotopies](foundation.multivariable-homotopies.md). - The [whiskering operations](foundation.whiskering-homotopies.md) on homotopies.