# Maps from small to large categories

```agda
module category-theory.maps-from-small-to-large-categories where
```

<details><summary>Imports</summary>

```agda
open import category-theory.categories
open import category-theory.large-categories
open import category-theory.maps-from-small-to-large-precategories

open import foundation.equivalences
open import foundation.identity-types
open import foundation.torsorial-type-families
open import foundation.universe-levels
```

</details>

## Idea

A **map** from a [(small) category](category-theory.categories.md) `C` to a
[large category](category-theory.large-categories.md) `D` consists of:

- a map `F₀ : C → D` on objects at a chosen universe level `γ`,
- a map `F₁ : hom x y → hom (F₀ x) (F₀ y)` on morphisms.

## Definition

```agda
module _
  {l1 l2 : Level} {α : Level  Level} {β : Level  Level  Level}
  (C : Category l1 l2) (D : Large-Category α β)
  where

  map-Small-Large-Category : (γ : Level)  UU (l1  l2  α γ  β γ γ)
  map-Small-Large-Category =
    map-Small-Large-Precategory
      ( precategory-Category C)
      ( large-precategory-Large-Category D)

  obj-map-Small-Large-Category :
    {γ : Level}  map-Small-Large-Category γ 
    obj-Category C  obj-Large-Category D γ
  obj-map-Small-Large-Category {γ} =
    obj-map-Small-Large-Precategory
      ( precategory-Category C)
      ( large-precategory-Large-Category D)

  hom-map-Small-Large-Category :
    {γ : Level} 
    (F : map-Small-Large-Category γ) 
    { X Y : obj-Category C} 
    hom-Category C X Y 
    hom-Large-Category D
      ( obj-map-Small-Large-Category F X)
      ( obj-map-Small-Large-Category F Y)
  hom-map-Small-Large-Category {γ} =
    hom-map-Small-Large-Precategory
      ( precategory-Category C)
      ( large-precategory-Large-Category D)
```

## Properties

### Characterization of equality of maps from small to large categories

```agda
module _
  {l1 l2 γ : Level} {α : Level  Level} {β : Level  Level  Level}
  (C : Category l1 l2) (D : Large-Category α β)
  where

  htpy-map-Small-Large-Category :
    (f g : map-Small-Large-Category C D γ)  UU (l1  l2  α γ  β γ γ)
  htpy-map-Small-Large-Category =
    htpy-map-Small-Large-Precategory
      ( precategory-Category C)
      ( large-precategory-Large-Category D)

  htpy-eq-map-Small-Large-Category :
    (f g : map-Small-Large-Category C D γ) 
    (f  g)  htpy-map-Small-Large-Category f g
  htpy-eq-map-Small-Large-Category =
    htpy-eq-map-Small-Large-Precategory
      ( precategory-Category C)
      ( large-precategory-Large-Category D)

  is-torsorial-htpy-map-Small-Large-Category :
    (f : map-Small-Large-Category C D γ) 
    is-torsorial (htpy-map-Small-Large-Category f)
  is-torsorial-htpy-map-Small-Large-Category =
    is-torsorial-htpy-map-Small-Large-Precategory
      ( precategory-Category C)
      ( large-precategory-Large-Category D)

  is-equiv-htpy-eq-map-Small-Large-Category :
    (f g : map-Small-Large-Category C D γ) 
    is-equiv (htpy-eq-map-Small-Large-Category f g)
  is-equiv-htpy-eq-map-Small-Large-Category =
    is-equiv-htpy-eq-map-Small-Large-Precategory
      ( precategory-Category C)
      ( large-precategory-Large-Category D)

  equiv-htpy-eq-map-Small-Large-Category :
    (f g : map-Small-Large-Category C D γ) 
    (f  g)  htpy-map-Small-Large-Category f g
  equiv-htpy-eq-map-Small-Large-Category =
    equiv-htpy-eq-map-Small-Large-Precategory
      ( precategory-Category C)
      ( large-precategory-Large-Category D)

  eq-htpy-map-Small-Large-Category :
    (f g : map-Small-Large-Category C D γ) 
    htpy-map-Small-Large-Category f g  (f  g)
  eq-htpy-map-Small-Large-Category =
    eq-htpy-map-Small-Large-Precategory
      ( precategory-Category C)
      ( large-precategory-Large-Category D)
```

## See also

- [Functors from small to large categories](category-theory.functors-from-small-to-large-categories.md)
- [The category of maps and natural transformations from small to large categories](category-theory.category-of-maps-from-small-to-large-categories.md)