# Maps from small to large categories ```agda module category-theory.maps-from-small-to-large-categories where ``` <details><summary>Imports</summary> ```agda open import category-theory.categories open import category-theory.large-categories open import category-theory.maps-from-small-to-large-precategories open import foundation.equivalences open import foundation.identity-types open import foundation.torsorial-type-families open import foundation.universe-levels ``` </details> ## Idea A **map** from a [(small) category](category-theory.categories.md) `C` to a [large category](category-theory.large-categories.md) `D` consists of: - a map `F₀ : C → D` on objects at a chosen universe level `γ`, - a map `F₁ : hom x y → hom (F₀ x) (F₀ y)` on morphisms. ## Definition ```agda module _ {l1 l2 : Level} {α : Level → Level} {β : Level → Level → Level} (C : Category l1 l2) (D : Large-Category α β) where map-Small-Large-Category : (γ : Level) → UU (l1 ⊔ l2 ⊔ α γ ⊔ β γ γ) map-Small-Large-Category = map-Small-Large-Precategory ( precategory-Category C) ( large-precategory-Large-Category D) obj-map-Small-Large-Category : {γ : Level} → map-Small-Large-Category γ → obj-Category C → obj-Large-Category D γ obj-map-Small-Large-Category {γ} = obj-map-Small-Large-Precategory ( precategory-Category C) ( large-precategory-Large-Category D) hom-map-Small-Large-Category : {γ : Level} → (F : map-Small-Large-Category γ) → { X Y : obj-Category C} → hom-Category C X Y → hom-Large-Category D ( obj-map-Small-Large-Category F X) ( obj-map-Small-Large-Category F Y) hom-map-Small-Large-Category {γ} = hom-map-Small-Large-Precategory ( precategory-Category C) ( large-precategory-Large-Category D) ``` ## Properties ### Characterization of equality of maps from small to large categories ```agda module _ {l1 l2 γ : Level} {α : Level → Level} {β : Level → Level → Level} (C : Category l1 l2) (D : Large-Category α β) where htpy-map-Small-Large-Category : (f g : map-Small-Large-Category C D γ) → UU (l1 ⊔ l2 ⊔ α γ ⊔ β γ γ) htpy-map-Small-Large-Category = htpy-map-Small-Large-Precategory ( precategory-Category C) ( large-precategory-Large-Category D) htpy-eq-map-Small-Large-Category : (f g : map-Small-Large-Category C D γ) → (f = g) → htpy-map-Small-Large-Category f g htpy-eq-map-Small-Large-Category = htpy-eq-map-Small-Large-Precategory ( precategory-Category C) ( large-precategory-Large-Category D) is-torsorial-htpy-map-Small-Large-Category : (f : map-Small-Large-Category C D γ) → is-torsorial (htpy-map-Small-Large-Category f) is-torsorial-htpy-map-Small-Large-Category = is-torsorial-htpy-map-Small-Large-Precategory ( precategory-Category C) ( large-precategory-Large-Category D) is-equiv-htpy-eq-map-Small-Large-Category : (f g : map-Small-Large-Category C D γ) → is-equiv (htpy-eq-map-Small-Large-Category f g) is-equiv-htpy-eq-map-Small-Large-Category = is-equiv-htpy-eq-map-Small-Large-Precategory ( precategory-Category C) ( large-precategory-Large-Category D) equiv-htpy-eq-map-Small-Large-Category : (f g : map-Small-Large-Category C D γ) → (f = g) ≃ htpy-map-Small-Large-Category f g equiv-htpy-eq-map-Small-Large-Category = equiv-htpy-eq-map-Small-Large-Precategory ( precategory-Category C) ( large-precategory-Large-Category D) eq-htpy-map-Small-Large-Category : (f g : map-Small-Large-Category C D γ) → htpy-map-Small-Large-Category f g → (f = g) eq-htpy-map-Small-Large-Category = eq-htpy-map-Small-Large-Precategory ( precategory-Category C) ( large-precategory-Large-Category D) ``` ## See also - [Functors from small to large categories](category-theory.functors-from-small-to-large-categories.md) - [The category of maps and natural transformations from small to large categories](category-theory.category-of-maps-from-small-to-large-categories.md)