# The precategory of functors and natural transformations from small to large precategories ```agda module category-theory.precategory-of-functors-from-small-to-large-precategories where ``` <details><summary>Imports</summary> ```agda open import category-theory.functors-from-small-to-large-precategories open import category-theory.large-precategories open import category-theory.natural-transformations-functors-from-small-to-large-precategories open import category-theory.precategories open import foundation.identity-types open import foundation.universe-levels ``` </details> ## Idea [Functors](category-theory.functors-from-small-to-large-precategories.md) from a small [precategory](category-theory.precategories.md) `C` to a [large precategory](category-theory.large-precategories.md) `D` and [natural transformations](category-theory.natural-transformations-functors-precategories.md) between them form a large precategory whose identity map and composition structure are inherited pointwise from the codomain precategory. This is called the **precategory of functors from small to large precategories**. ## Definitions ### The large precategory of functors and natural transformations from a small to a large precategory ```agda module _ {l1 l2 : Level} {α : Level → Level} {β : Level → Level → Level} (C : Precategory l1 l2) (D : Large-Precategory α β) where hom-functor-large-precategory-Small-Large-Precategory : {γF γG : Level} (F : functor-Small-Large-Precategory C D γF) (G : functor-Small-Large-Precategory C D γG) → UU (l1 ⊔ l2 ⊔ β γF γG) hom-functor-large-precategory-Small-Large-Precategory = natural-transformation-Small-Large-Precategory C D comp-hom-functor-large-precategory-Small-Large-Precategory : {γF γG γH : Level} {F : functor-Small-Large-Precategory C D γF} {G : functor-Small-Large-Precategory C D γG} {H : functor-Small-Large-Precategory C D γH} → natural-transformation-Small-Large-Precategory C D G H → natural-transformation-Small-Large-Precategory C D F G → natural-transformation-Small-Large-Precategory C D F H comp-hom-functor-large-precategory-Small-Large-Precategory {F = F} {G} {H} = comp-natural-transformation-Small-Large-Precategory C D F G H associative-comp-hom-functor-large-precategory-Small-Large-Precategory : {γF γG γH γI : Level} {F : functor-Small-Large-Precategory C D γF} {G : functor-Small-Large-Precategory C D γG} {H : functor-Small-Large-Precategory C D γH} {I : functor-Small-Large-Precategory C D γI} (h : natural-transformation-Small-Large-Precategory C D H I) (g : natural-transformation-Small-Large-Precategory C D G H) (f : natural-transformation-Small-Large-Precategory C D F G) → comp-natural-transformation-Small-Large-Precategory C D F G I ( comp-natural-transformation-Small-Large-Precategory C D G H I h g) ( f) = comp-natural-transformation-Small-Large-Precategory C D F H I ( h) ( comp-natural-transformation-Small-Large-Precategory C D F G H g f) associative-comp-hom-functor-large-precategory-Small-Large-Precategory {F = F} {G} {H} {I} h g f = associative-comp-natural-transformation-Small-Large-Precategory C D F G H I f g h inv-associative-comp-hom-functor-large-precategory-Small-Large-Precategory : {γF γG γH γI : Level} {F : functor-Small-Large-Precategory C D γF} {G : functor-Small-Large-Precategory C D γG} {H : functor-Small-Large-Precategory C D γH} {I : functor-Small-Large-Precategory C D γI} (h : natural-transformation-Small-Large-Precategory C D H I) (g : natural-transformation-Small-Large-Precategory C D G H) (f : natural-transformation-Small-Large-Precategory C D F G) → comp-natural-transformation-Small-Large-Precategory C D F H I ( h) ( comp-natural-transformation-Small-Large-Precategory C D F G H g f) = comp-natural-transformation-Small-Large-Precategory C D F G I ( comp-natural-transformation-Small-Large-Precategory C D G H I h g) ( f) inv-associative-comp-hom-functor-large-precategory-Small-Large-Precategory {F = F} {G} {H} {I} h g f = inv-associative-comp-natural-transformation-Small-Large-Precategory C D F G H I f g h id-hom-functor-large-precategory-Small-Large-Precategory : {γF : Level} {F : functor-Small-Large-Precategory C D γF} → natural-transformation-Small-Large-Precategory C D F F id-hom-functor-large-precategory-Small-Large-Precategory {F = F} = id-natural-transformation-Small-Large-Precategory C D F left-unit-law-comp-hom-functor-large-precategory-Small-Large-Precategory : {γF γG : Level} {F : functor-Small-Large-Precategory C D γF} {G : functor-Small-Large-Precategory C D γG} (a : natural-transformation-Small-Large-Precategory C D F G) → comp-natural-transformation-Small-Large-Precategory C D F G G ( id-natural-transformation-Small-Large-Precategory C D G) a = a left-unit-law-comp-hom-functor-large-precategory-Small-Large-Precategory { F = F} {G} = left-unit-law-comp-natural-transformation-Small-Large-Precategory C D F G right-unit-law-comp-hom-functor-large-precategory-Small-Large-Precategory : {γF γG : Level} {F : functor-Small-Large-Precategory C D γF} {G : functor-Small-Large-Precategory C D γG} (a : natural-transformation-Small-Large-Precategory C D F G) → comp-natural-transformation-Small-Large-Precategory C D F F G a (id-natural-transformation-Small-Large-Precategory C D F) = a right-unit-law-comp-hom-functor-large-precategory-Small-Large-Precategory { F = F} {G} = right-unit-law-comp-natural-transformation-Small-Large-Precategory C D F G functor-large-precategory-Small-Large-Precategory : Large-Precategory (λ l → l1 ⊔ l2 ⊔ α l ⊔ β l l) (λ l l' → l1 ⊔ l2 ⊔ β l l') obj-Large-Precategory functor-large-precategory-Small-Large-Precategory = functor-Small-Large-Precategory C D hom-set-Large-Precategory functor-large-precategory-Small-Large-Precategory = natural-transformation-set-Small-Large-Precategory C D comp-hom-Large-Precategory functor-large-precategory-Small-Large-Precategory {X = F} {G} {H} = comp-hom-functor-large-precategory-Small-Large-Precategory {F = F} {G} {H} id-hom-Large-Precategory functor-large-precategory-Small-Large-Precategory {X = F} = id-hom-functor-large-precategory-Small-Large-Precategory {F = F} associative-comp-hom-Large-Precategory functor-large-precategory-Small-Large-Precategory {X = F} {G} {H} {I} = associative-comp-hom-functor-large-precategory-Small-Large-Precategory { F = F} {G} {H} {I} inv-associative-comp-hom-Large-Precategory functor-large-precategory-Small-Large-Precategory {X = F} {G} {H} {I} = inv-associative-comp-hom-functor-large-precategory-Small-Large-Precategory { F = F} {G} {H} {I} left-unit-law-comp-hom-Large-Precategory functor-large-precategory-Small-Large-Precategory {X = F} {G} = left-unit-law-comp-hom-functor-large-precategory-Small-Large-Precategory { F = F} {G} right-unit-law-comp-hom-Large-Precategory functor-large-precategory-Small-Large-Precategory {X = F} {G} = right-unit-law-comp-hom-functor-large-precategory-Small-Large-Precategory { F = F} {G} ``` ### The small precategories of functors and natural transformations from a small to a large precategory ```agda module _ {l1 l2 : Level} {α : Level → Level} {β : Level → Level → Level} (C : Precategory l1 l2) (D : Large-Precategory α β) where functor-precategory-Small-Large-Precategory : (l : Level) → Precategory (l1 ⊔ l2 ⊔ α l ⊔ β l l) (l1 ⊔ l2 ⊔ β l l) functor-precategory-Small-Large-Precategory = precategory-Large-Precategory ( functor-large-precategory-Small-Large-Precategory C D) ```