# Natural transformations between functors from small to large precategories ```agda module category-theory.natural-transformations-functors-from-small-to-large-precategories where ``` <details><summary>Imports</summary> ```agda open import category-theory.functors-from-small-to-large-precategories open import category-theory.large-precategories open import category-theory.natural-transformations-maps-from-small-to-large-precategories open import category-theory.precategories open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.equivalences open import foundation.homotopies open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.universe-levels ``` </details> ## Idea Given a small [precategory](category-theory.precategories.md) `C` and a [large precategory](category-theory.large-precategories.md) `D`, a **natural transformation** from a [functor](category-theory.functors-from-small-to-large-precategories.md) `F : C → D` to `G : C → D` consists of : - a family of morphisms `a : (x : C) → hom (F x) (G x)` such that the following identity holds: - `(G f) ∘ (a x) = (a y) ∘ (F f)`, for all `f : hom x y`. ## Definition ```agda module _ {l1 l2 γF γG : Level} {α : Level → Level} {β : Level → Level → Level} (C : Precategory l1 l2) (D : Large-Precategory α β) (F : functor-Small-Large-Precategory C D γF) (G : functor-Small-Large-Precategory C D γG) where hom-family-functor-Small-Large-Precategory : UU (l1 ⊔ β γF γG) hom-family-functor-Small-Large-Precategory = hom-family-map-Small-Large-Precategory C D ( map-functor-Small-Large-Precategory C D F) ( map-functor-Small-Large-Precategory C D G) is-natural-transformation-Small-Large-Precategory : hom-family-functor-Small-Large-Precategory → UU (l1 ⊔ l2 ⊔ β γF γG) is-natural-transformation-Small-Large-Precategory = is-natural-transformation-map-Small-Large-Precategory C D ( map-functor-Small-Large-Precategory C D F) ( map-functor-Small-Large-Precategory C D G) natural-transformation-Small-Large-Precategory : UU (l1 ⊔ l2 ⊔ β γF γG) natural-transformation-Small-Large-Precategory = natural-transformation-map-Small-Large-Precategory C D ( map-functor-Small-Large-Precategory C D F) ( map-functor-Small-Large-Precategory C D G) hom-natural-transformation-Small-Large-Precategory : natural-transformation-Small-Large-Precategory → hom-family-functor-Small-Large-Precategory hom-natural-transformation-Small-Large-Precategory = hom-natural-transformation-map-Small-Large-Precategory C D ( map-functor-Small-Large-Precategory C D F) ( map-functor-Small-Large-Precategory C D G) naturality-natural-transformation-Small-Large-Precategory : (γ : natural-transformation-Small-Large-Precategory) → is-natural-transformation-Small-Large-Precategory ( hom-natural-transformation-Small-Large-Precategory γ) naturality-natural-transformation-Small-Large-Precategory = naturality-natural-transformation-map-Small-Large-Precategory C D ( map-functor-Small-Large-Precategory C D F) ( map-functor-Small-Large-Precategory C D G) ``` ## Composition and identity of natural transformations ```agda module _ {l1 l2 : Level} {α : Level → Level} {β : Level → Level → Level} (C : Precategory l1 l2) (D : Large-Precategory α β) where id-natural-transformation-Small-Large-Precategory : {γF : Level} (F : functor-Small-Large-Precategory C D γF) → natural-transformation-Small-Large-Precategory C D F F id-natural-transformation-Small-Large-Precategory F = id-natural-transformation-map-Small-Large-Precategory C D ( map-functor-Small-Large-Precategory C D F) comp-natural-transformation-Small-Large-Precategory : {γF γG γH : Level} (F : functor-Small-Large-Precategory C D γF) (G : functor-Small-Large-Precategory C D γG) (H : functor-Small-Large-Precategory C D γH) → natural-transformation-Small-Large-Precategory C D G H → natural-transformation-Small-Large-Precategory C D F G → natural-transformation-Small-Large-Precategory C D F H comp-natural-transformation-Small-Large-Precategory F G H = comp-natural-transformation-map-Small-Large-Precategory C D ( map-functor-Small-Large-Precategory C D F) ( map-functor-Small-Large-Precategory C D G) ( map-functor-Small-Large-Precategory C D H) ``` ## Properties ### That a family of morphisms is a natural transformation is a proposition This follows from the fact that the hom-types are [sets](foundation-core.sets.md). ```agda module _ {l1 l2 γF γG : Level} {α : Level → Level} {β : Level → Level → Level} (C : Precategory l1 l2) (D : Large-Precategory α β) (F : functor-Small-Large-Precategory C D γF) (G : functor-Small-Large-Precategory C D γG) where is-prop-is-natural-transformation-Small-Large-Precategory : (γ : hom-family-functor-Small-Large-Precategory C D F G) → is-prop (is-natural-transformation-Small-Large-Precategory C D F G γ) is-prop-is-natural-transformation-Small-Large-Precategory = is-prop-is-natural-transformation-map-Small-Large-Precategory C D ( map-functor-Small-Large-Precategory C D F) ( map-functor-Small-Large-Precategory C D G) is-natural-transformation-prop-Small-Large-Precategory : (γ : hom-family-functor-Small-Large-Precategory C D F G) → Prop (l1 ⊔ l2 ⊔ β γF γG) is-natural-transformation-prop-Small-Large-Precategory = is-natural-transformation-prop-map-Small-Large-Precategory C D ( map-functor-Small-Large-Precategory C D F) ( map-functor-Small-Large-Precategory C D G) ``` ### The set of natural transformations ```agda module _ {l1 l2 γF γG : Level} {α : Level → Level} {β : Level → Level → Level} (C : Precategory l1 l2) (D : Large-Precategory α β) (F : functor-Small-Large-Precategory C D γF) (G : functor-Small-Large-Precategory C D γG) where is-emb-hom-family-natural-transformation-Small-Large-Precategory : is-emb (hom-natural-transformation-Small-Large-Precategory C D F G) is-emb-hom-family-natural-transformation-Small-Large-Precategory = is-emb-hom-natural-transformation-map-Small-Large-Precategory C D ( map-functor-Small-Large-Precategory C D F) ( map-functor-Small-Large-Precategory C D G) emb-hom-natural-transformation-Small-Large-Precategory : natural-transformation-Small-Large-Precategory C D F G ↪ hom-family-functor-Small-Large-Precategory C D F G emb-hom-natural-transformation-Small-Large-Precategory = emb-hom-natural-transformation-map-Small-Large-Precategory C D ( map-functor-Small-Large-Precategory C D F) ( map-functor-Small-Large-Precategory C D G) is-set-natural-transformation-Small-Large-Precategory : is-set (natural-transformation-Small-Large-Precategory C D F G) is-set-natural-transformation-Small-Large-Precategory = is-set-natural-transformation-map-Small-Large-Precategory C D ( map-functor-Small-Large-Precategory C D F) ( map-functor-Small-Large-Precategory C D G) natural-transformation-set-Small-Large-Precategory : Set (l1 ⊔ l2 ⊔ β γF γG) pr1 (natural-transformation-set-Small-Large-Precategory) = natural-transformation-Small-Large-Precategory C D F G pr2 (natural-transformation-set-Small-Large-Precategory) = is-set-natural-transformation-Small-Large-Precategory extensionality-natural-transformation-Small-Large-Precategory : (a b : natural-transformation-Small-Large-Precategory C D F G) → ( a = b) ≃ ( hom-natural-transformation-Small-Large-Precategory C D F G a ~ hom-natural-transformation-Small-Large-Precategory C D F G b) extensionality-natural-transformation-Small-Large-Precategory = extensionality-natural-transformation-map-Small-Large-Precategory C D ( map-functor-Small-Large-Precategory C D F) ( map-functor-Small-Large-Precategory C D G) eq-htpy-hom-natural-transformation-Small-Large-Precategory : (a b : natural-transformation-Small-Large-Precategory C D F G) → ( hom-natural-transformation-Small-Large-Precategory C D F G a ~ hom-natural-transformation-Small-Large-Precategory C D F G b) → a = b eq-htpy-hom-natural-transformation-Small-Large-Precategory = eq-htpy-hom-natural-transformation-map-Small-Large-Precategory C D ( map-functor-Small-Large-Precategory C D F) ( map-functor-Small-Large-Precategory C D G) ``` ### Categorical laws for natural transformations ```agda module _ {l1 l2 : Level} {α : Level → Level} {β : Level → Level → Level} (C : Precategory l1 l2) (D : Large-Precategory α β) where right-unit-law-comp-natural-transformation-Small-Large-Precategory : {γF γG : Level} (F : functor-Small-Large-Precategory C D γF) (G : functor-Small-Large-Precategory C D γG) (a : natural-transformation-Small-Large-Precategory C D F G) → comp-natural-transformation-Small-Large-Precategory C D F F G a ( id-natural-transformation-Small-Large-Precategory C D F) = a right-unit-law-comp-natural-transformation-Small-Large-Precategory F G = right-unit-law-comp-natural-transformation-map-Small-Large-Precategory C D ( map-functor-Small-Large-Precategory C D F) ( map-functor-Small-Large-Precategory C D G) left-unit-law-comp-natural-transformation-Small-Large-Precategory : {γF γG : Level} (F : functor-Small-Large-Precategory C D γF) (G : functor-Small-Large-Precategory C D γG) (a : natural-transformation-Small-Large-Precategory C D F G) → comp-natural-transformation-Small-Large-Precategory C D F G G ( id-natural-transformation-Small-Large-Precategory C D G) a = a left-unit-law-comp-natural-transformation-Small-Large-Precategory F G = left-unit-law-comp-natural-transformation-map-Small-Large-Precategory C D ( map-functor-Small-Large-Precategory C D F) ( map-functor-Small-Large-Precategory C D G) associative-comp-natural-transformation-Small-Large-Precategory : {γF γG γH γI : Level} (F : functor-Small-Large-Precategory C D γF) (G : functor-Small-Large-Precategory C D γG) (H : functor-Small-Large-Precategory C D γH) (I : functor-Small-Large-Precategory C D γI) (a : natural-transformation-Small-Large-Precategory C D F G) (b : natural-transformation-Small-Large-Precategory C D G H) (c : natural-transformation-Small-Large-Precategory C D H I) → comp-natural-transformation-Small-Large-Precategory C D F G I ( comp-natural-transformation-Small-Large-Precategory C D G H I c b) a = comp-natural-transformation-Small-Large-Precategory C D F H I c ( comp-natural-transformation-Small-Large-Precategory C D F G H b a) associative-comp-natural-transformation-Small-Large-Precategory F G H I = associative-comp-natural-transformation-map-Small-Large-Precategory C D ( map-functor-Small-Large-Precategory C D F) ( map-functor-Small-Large-Precategory C D G) ( map-functor-Small-Large-Precategory C D H) ( map-functor-Small-Large-Precategory C D I) inv-associative-comp-natural-transformation-Small-Large-Precategory : {γF γG γH γI : Level} (F : functor-Small-Large-Precategory C D γF) (G : functor-Small-Large-Precategory C D γG) (H : functor-Small-Large-Precategory C D γH) (I : functor-Small-Large-Precategory C D γI) (a : natural-transformation-Small-Large-Precategory C D F G) (b : natural-transformation-Small-Large-Precategory C D G H) (c : natural-transformation-Small-Large-Precategory C D H I) → comp-natural-transformation-Small-Large-Precategory C D F H I c ( comp-natural-transformation-Small-Large-Precategory C D F G H b a) = comp-natural-transformation-Small-Large-Precategory C D F G I ( comp-natural-transformation-Small-Large-Precategory C D G H I c b) a inv-associative-comp-natural-transformation-Small-Large-Precategory F G H I = inv-associative-comp-natural-transformation-map-Small-Large-Precategory C D ( map-functor-Small-Large-Precategory C D F) ( map-functor-Small-Large-Precategory C D G) ( map-functor-Small-Large-Precategory C D H) ( map-functor-Small-Large-Precategory C D I) ```