# Embeddings ```agda module foundation-core.embeddings where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.identity-types ``` </details> ## Idea An **embedding** from one type into another is a map that induces [equivalences](foundation-core.equivalences.md) on [identity types](foundation-core.identity-types.md). In other words, the identitifications `(f x) = (f y)` for an embedding `f : A → B` are in one-to-one correspondence with the identitifications `x = y`. Embeddings are better behaved homotopically than [injective maps](foundation-core.injective-maps.md), because the condition of being an equivalence is a [property](foundation-core.propositions.md) under [function extensionality](foundation.function-extensionality.md). ## Definition ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where is-emb : (A → B) → UU (l1 ⊔ l2) is-emb f = (x y : A) → is-equiv (ap f {x} {y}) equiv-ap-is-emb : {f : A → B} (e : is-emb f) {x y : A} → (x = y) ≃ (f x = f y) pr1 (equiv-ap-is-emb {f} e) = ap f pr2 (equiv-ap-is-emb {f} e {x} {y}) = e x y inv-equiv-ap-is-emb : {f : A → B} (e : is-emb f) {x y : A} → (f x = f y) ≃ (x = y) inv-equiv-ap-is-emb e = inv-equiv (equiv-ap-is-emb e) infix 5 _↪_ _↪_ : {l1 l2 : Level} → UU l1 → UU l2 → UU (l1 ⊔ l2) A ↪ B = Σ (A → B) is-emb module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where map-emb : A ↪ B → A → B map-emb = pr1 is-emb-map-emb : (f : A ↪ B) → is-emb (map-emb f) is-emb-map-emb = pr2 equiv-ap-emb : (e : A ↪ B) {x y : A} → (x = y) ≃ (map-emb e x = map-emb e y) equiv-ap-emb e = equiv-ap-is-emb (is-emb-map-emb e) inv-equiv-ap-emb : (e : A ↪ B) {x y : A} → (map-emb e x = map-emb e y) ≃ (x = y) inv-equiv-ap-emb e = inv-equiv (equiv-ap-emb e) ``` ## Examples ### The identity map is an embedding ```agda module _ {l : Level} {A : UU l} where is-emb-id : is-emb (id {A = A}) is-emb-id x y = is-equiv-htpy id ap-id is-equiv-id id-emb : A ↪ A pr1 id-emb = id pr2 id-emb = is-emb-id ``` ### To prove that a map is an embedding, a point in the domain may be assumed ```agda module _ {l : Level} {A : UU l} {l2 : Level} {B : UU l2} {f : A → B} where abstract is-emb-is-emb : (A → is-emb f) → is-emb f is-emb-is-emb H x y = H x x y ```