# Embeddings

```agda
module foundation-core.embeddings where
```

<details><summary>Imports</summary>

```agda
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.universe-levels

open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.identity-types
```

</details>

## Idea

An **embedding** from one type into another is a map that induces
[equivalences](foundation-core.equivalences.md) on
[identity types](foundation-core.identity-types.md). In other words, the
identitifications `(f x) = (f y)` for an embedding `f : A → B` are in
one-to-one correspondence with the identitifications `x = y`. Embeddings are
better behaved homotopically than
[injective maps](foundation-core.injective-maps.md), because the condition of
being an equivalence is a [property](foundation-core.propositions.md) under
[function extensionality](foundation.function-extensionality.md).

## Definition

```agda
module _
  {l1 l2 : Level} {A : UU l1} {B : UU l2}
  where

  is-emb : (A  B)  UU (l1  l2)
  is-emb f = (x y : A)  is-equiv (ap f {x} {y})

  equiv-ap-is-emb :
    {f : A  B} (e : is-emb f) {x y : A}  (x  y)  (f x  f y)
  pr1 (equiv-ap-is-emb {f} e) = ap f
  pr2 (equiv-ap-is-emb {f} e {x} {y}) = e x y

  inv-equiv-ap-is-emb :
    {f : A  B} (e : is-emb f) {x y : A}  (f x  f y)  (x  y)
  inv-equiv-ap-is-emb e = inv-equiv (equiv-ap-is-emb e)

infix 5 _↪_
_↪_ :
  {l1 l2 : Level}  UU l1  UU l2  UU (l1  l2)
A  B = Σ (A  B) is-emb

module _
  {l1 l2 : Level} {A : UU l1} {B : UU l2}
  where

  map-emb : A  B  A  B
  map-emb = pr1

  is-emb-map-emb : (f : A  B)  is-emb (map-emb f)
  is-emb-map-emb = pr2

  equiv-ap-emb :
    (e : A  B) {x y : A}  (x  y)  (map-emb e x  map-emb e y)
  equiv-ap-emb e = equiv-ap-is-emb (is-emb-map-emb e)

  inv-equiv-ap-emb :
    (e : A  B) {x y : A}  (map-emb e x  map-emb e y)  (x  y)
  inv-equiv-ap-emb e = inv-equiv (equiv-ap-emb e)
```

## Examples

### The identity map is an embedding

```agda
module _
  {l : Level} {A : UU l}
  where

  is-emb-id : is-emb (id {A = A})
  is-emb-id x y = is-equiv-htpy id ap-id is-equiv-id

  id-emb : A  A
  pr1 id-emb = id
  pr2 id-emb = is-emb-id
```

### To prove that a map is an embedding, a point in the domain may be assumed

```agda
module _
  {l : Level} {A : UU l} {l2 : Level} {B : UU l2} {f : A  B}
  where

  abstract
    is-emb-is-emb : (A  is-emb f)  is-emb f
    is-emb-is-emb H x y = H x x y
```