# Sets ```agda module foundation-core.sets where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.fundamental-theorem-of-identity-types open import foundation.universe-levels open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.identity-types open import foundation-core.propositions open import foundation-core.truncated-types open import foundation-core.truncation-levels ``` </details> ## Idea A type is a set if its identity types are propositions. ## Definition ```agda is-set : {l : Level} → UU l → UU l is-set A = (x y : A) → is-prop (x = y) Set : (l : Level) → UU (lsuc l) Set l = Σ (UU l) is-set module _ {l : Level} (X : Set l) where type-Set : UU l type-Set = pr1 X abstract is-set-type-Set : is-set type-Set is-set-type-Set = pr2 X Id-Prop : (x y : type-Set) → Prop l pr1 (Id-Prop x y) = (x = y) pr2 (Id-Prop x y) = is-set-type-Set x y ``` ## Properties ### A type is a set if and only if it satisfies Streicher's axiom K ```agda instance-axiom-K : {l : Level} → UU l → UU l instance-axiom-K A = (x : A) (p : x = x) → refl = p axiom-K-Level : (l : Level) → UU (lsuc l) axiom-K-Level l = (A : UU l) → instance-axiom-K A axiom-K : UUω axiom-K = {l : Level} → axiom-K-Level l module _ {l : Level} {A : UU l} where abstract is-set-axiom-K' : instance-axiom-K A → (x y : A) → all-elements-equal (x = y) is-set-axiom-K' K x .x refl q with K x q ... | refl = refl abstract is-set-axiom-K : instance-axiom-K A → is-set A is-set-axiom-K H x y = is-prop-all-elements-equal (is-set-axiom-K' H x y) abstract axiom-K-is-set : is-set A → instance-axiom-K A axiom-K-is-set H x p = ( inv (contraction (is-proof-irrelevant-is-prop (H x x) refl) refl)) ∙ ( contraction (is-proof-irrelevant-is-prop (H x x) refl) p) ``` ### If a reflexive binary relation maps into the identity type of `A`, then `A` is a set ```agda module _ {l1 l2 : Level} {A : UU l1} (R : A → A → UU l2) (p : (x y : A) → is-prop (R x y)) (ρ : (x : A) → R x x) (i : (x y : A) → R x y → x = y) where abstract is-equiv-prop-in-id : (x y : A) → is-equiv (i x y) is-equiv-prop-in-id x = fundamental-theorem-id-retraction x (i x) ( λ y → pair ( ind-Id x (λ z p → R x z) (ρ x) y) ( λ r → eq-is-prop (p x y))) abstract is-set-prop-in-id : is-set A is-set-prop-in-id x y = is-prop-is-equiv' (is-equiv-prop-in-id x y) (p x y) ``` ### Any proposition is a set ```agda abstract is-set-is-prop : {l : Level} {P : UU l} → is-prop P → is-set P is-set-is-prop = is-trunc-succ-is-trunc neg-one-𝕋 set-Prop : {l : Level} → Prop l → Set l set-Prop P = truncated-type-succ-Truncated-Type neg-one-𝕋 P ``` ### Sets are closed under equivalences ```agda abstract is-set-is-equiv : {l1 l2 : Level} {A : UU l1} (B : UU l2) (f : A → B) → is-equiv f → is-set B → is-set A is-set-is-equiv = is-trunc-is-equiv zero-𝕋 abstract is-set-equiv : {l1 l2 : Level} {A : UU l1} (B : UU l2) (e : A ≃ B) → is-set B → is-set A is-set-equiv = is-trunc-equiv zero-𝕋 abstract is-set-is-equiv' : {l1 l2 : Level} (A : UU l1) {B : UU l2} (f : A → B) → is-equiv f → is-set A → is-set B is-set-is-equiv' = is-trunc-is-equiv' zero-𝕋 abstract is-set-equiv' : {l1 l2 : Level} (A : UU l1) {B : UU l2} (e : A ≃ B) → is-set A → is-set B is-set-equiv' = is-trunc-equiv' zero-𝕋 ```