# Contractible types ```agda module foundation-core.contractible-types where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.equality-cartesian-product-types open import foundation.function-extensionality open import foundation.implicit-function-types open import foundation.retracts-of-types open import foundation.universe-levels open import foundation-core.cartesian-product-types open import foundation-core.equality-dependent-pair-types open import foundation-core.equivalences open import foundation-core.identity-types open import foundation-core.transport-along-identifications ``` </details> ## Idea Contractible types are types that have, up to identification, exactly one element. ## Definition ```agda is-contr : {l : Level} → UU l → UU l is-contr A = Σ A (λ a → (x : A) → a = x) abstract center : {l : Level} {A : UU l} → is-contr A → A center (pair c is-contr-A) = c eq-is-contr' : {l : Level} {A : UU l} → is-contr A → (x y : A) → x = y eq-is-contr' (pair c C) x y = (inv (C x)) ∙ (C y) eq-is-contr : {l : Level} {A : UU l} → is-contr A → {x y : A} → x = y eq-is-contr C {x} {y} = eq-is-contr' C x y abstract contraction : {l : Level} {A : UU l} (is-contr-A : is-contr A) → (x : A) → (center is-contr-A) = x contraction C x = eq-is-contr C coh-contraction : {l : Level} {A : UU l} (is-contr-A : is-contr A) → (contraction is-contr-A (center is-contr-A)) = refl coh-contraction (pair c C) = left-inv (C c) ``` ## Examples ### The total space of the identity type based at a point is contractible Type families of which the total space is contractible are also called [torsorial](foundation-core.torsorial-type-families.md). This terminology originates from higher group theory, where a [higher group action](higher-group-theory.higher-group-actions.md) is torsorial if its type of [orbits](higher-group-theory.orbits-higher-group-actions.md), i.e., its total space, is contractible. We prove two variants of the claim that the total space of the identity type is contractible: the first version keeps the left-hand side fixed, and the second version keeps the right-hand side fixed. ```agda module _ {l : Level} {A : UU l} where abstract is-torsorial-path : (a : A) → is-contr (Σ A (λ x → a = x)) pr1 (pr1 (is-torsorial-path a)) = a pr2 (pr1 (is-torsorial-path a)) = refl pr2 (is-torsorial-path a) (pair .a refl) = refl abstract is-torsorial-path' : (a : A) → is-contr (Σ A (λ x → x = a)) pr1 (pr1 (is-torsorial-path' a)) = a pr2 (pr1 (is-torsorial-path' a)) = refl pr2 (is-torsorial-path' a) (pair .a refl) = refl ``` ## Properties ### Retracts of contractible types are contractible ```agda module _ {l1 l2 : Level} {A : UU l1} (B : UU l2) where abstract is-contr-retract-of : A retract-of B → is-contr B → is-contr A pr1 (is-contr-retract-of (pair i (pair r is-retraction)) H) = r (center H) pr2 (is-contr-retract-of (pair i (pair r is-retraction)) H) x = ap r (contraction H (i x)) ∙ (is-retraction x) ``` ### Contractible types are closed under equivalences ```agda module _ {l1 l2 : Level} {A : UU l1} (B : UU l2) where abstract is-contr-is-equiv : (f : A → B) → is-equiv f → is-contr B → is-contr A pr1 (is-contr-is-equiv f H (pair b K)) = map-inv-is-equiv H b pr2 (is-contr-is-equiv f H (pair b K)) x = ( ap (map-inv-is-equiv H) (K (f x))) ∙ ( is-retraction-map-inv-is-equiv H x) abstract is-contr-equiv : (e : A ≃ B) → is-contr B → is-contr A is-contr-equiv (pair e is-equiv-e) is-contr-B = is-contr-is-equiv e is-equiv-e is-contr-B module _ {l1 l2 : Level} (A : UU l1) {B : UU l2} where abstract is-contr-is-equiv' : (f : A → B) → is-equiv f → is-contr A → is-contr B is-contr-is-equiv' f is-equiv-f is-contr-A = is-contr-is-equiv A ( map-inv-is-equiv is-equiv-f) ( is-equiv-map-inv-is-equiv is-equiv-f) ( is-contr-A) abstract is-contr-equiv' : (e : A ≃ B) → is-contr A → is-contr B is-contr-equiv' (pair e is-equiv-e) is-contr-A = is-contr-is-equiv' e is-equiv-e is-contr-A module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where abstract is-equiv-is-contr : (f : A → B) → is-contr A → is-contr B → is-equiv f is-equiv-is-contr f is-contr-A is-contr-B = is-equiv-is-invertible ( λ y → center is-contr-A) ( λ y → eq-is-contr is-contr-B) ( contraction is-contr-A) equiv-is-contr : is-contr A → is-contr B → A ≃ B pr1 (equiv-is-contr is-contr-A is-contr-B) a = center is-contr-B pr2 (equiv-is-contr is-contr-A is-contr-B) = is-equiv-is-contr _ is-contr-A is-contr-B ``` ### Contractibility of cartesian product types Given two types `A` and `B`, the following are equivalent: 1. The type `A × B` is contractible. 2. Both `A` and `B` are contractible. ```agda module _ {l1 l2 : Level} (A : UU l1) (B : UU l2) where abstract is-contr-left-factor-prod : is-contr (A × B) → is-contr A is-contr-left-factor-prod is-contr-AB = is-contr-retract-of ( A × B) ( pair ( λ x → pair x (pr2 (center is-contr-AB))) ( pair pr1 (λ x → refl))) ( is-contr-AB) module _ {l1 l2 : Level} (A : UU l1) (B : UU l2) where abstract is-contr-right-factor-prod : is-contr (A × B) → is-contr B is-contr-right-factor-prod is-contr-AB = is-contr-retract-of ( A × B) ( pair ( pair (pr1 (center is-contr-AB))) ( pair pr2 (λ x → refl))) ( is-contr-AB) module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where abstract is-contr-prod : is-contr A → is-contr B → is-contr (A × B) pr1 (pr1 (is-contr-prod (pair a C) (pair b D))) = a pr2 (pr1 (is-contr-prod (pair a C) (pair b D))) = b pr2 (is-contr-prod (pair a C) (pair b D)) (pair x y) = eq-pair (C x) (D y) ``` ### Contractibility of Σ-types ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where abstract is-contr-Σ' : is-contr A → ((x : A) → is-contr (B x)) → is-contr (Σ A B) pr1 (pr1 (is-contr-Σ' (pair a H) is-contr-B)) = a pr2 (pr1 (is-contr-Σ' (pair a H) is-contr-B)) = center (is-contr-B a) pr2 (is-contr-Σ' (pair a H) is-contr-B) (pair x y) = eq-pair-Σ ( inv (inv (H x))) ( eq-transpose-tr (inv (H x)) (eq-is-contr (is-contr-B a))) abstract is-contr-Σ : is-contr A → (a : A) → is-contr (B a) → is-contr (Σ A B) pr1 (pr1 (is-contr-Σ H a K)) = a pr2 (pr1 (is-contr-Σ H a K)) = center K pr2 (is-contr-Σ H a K) (pair x y) = eq-pair-Σ ( inv (eq-is-contr H)) ( eq-transpose-tr (eq-is-contr H) (eq-is-contr K)) ``` **Note**: In the previous construction, we showed that `Σ A B` is contractible whenever `A` is contractible and whenever `B a` is contractible for a specified term `a : A`. We _could_ have chosen this term `a` to be the center of contraction of `A`. However, it turns out to be better not to do so in the construction of `is-contr-Σ`. The reason is that proofs of contractibility could be quite complicated and difficult to normalize. If we would require in the definition of `is-contr-Σ` that `B (center c)` is contractible, given the proof `c` of contractibility of `A`, then the type inference algorithm of Agda will be forced to normalize the proof `c` including the contraction. By instead providing a center of contraction by hand, we avoid this unnecessary load on the type inference algorithm, and hence any instance of `is-contr-Σ` will type check more efficiently. The general theme is that it may be computationally expensive to extract information from proofs of propositions, such as the center of contraction of a proof of contractibility. The reason for that is that when Agda normalizes an element (as it inevitably will do sometimes) then in such cases it will not just normalize the extracted information (in this case the first projection of the proof of contractibility), but it will normalize the entire proof of contractibility first, and then apply the projection. ### Contractible types are propositions ```agda is-prop-is-contr : {l : Level} {A : UU l} → is-contr A → (x y : A) → is-contr (x = y) pr1 (is-prop-is-contr H x y) = eq-is-contr H pr2 (is-prop-is-contr H x .x) refl = left-inv (pr2 H x) ``` ### Products of families of contractible types are contractible ```agda abstract is-contr-Π : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → ((x : A) → is-contr (B x)) → is-contr ((x : A) → B x) pr1 (is-contr-Π {A = A} {B = B} H) x = center (H x) pr2 (is-contr-Π {A = A} {B = B} H) f = map-inv-is-equiv ( funext (λ x → center (H x)) f) ( λ x → contraction (H x) (f x)) abstract is-contr-implicit-Π : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → ((x : A) → is-contr (B x)) → is-contr ({x : A} → B x) is-contr-implicit-Π H = is-contr-equiv _ equiv-explicit-implicit-Π (is-contr-Π H) ``` ### The type of functions into a contractible type is contractible ```agda is-contr-function-type : {l1 l2 : Level} {A : UU l1} {B : UU l2} → is-contr B → is-contr (A → B) is-contr-function-type is-contr-B = is-contr-Π λ _ → is-contr-B ``` ### The type of equivalences between contractible types is contractible ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where is-contr-equiv-is-contr : is-contr A → is-contr B → is-contr (A ≃ B) is-contr-equiv-is-contr (pair a α) (pair b β) = is-contr-Σ ( is-contr-function-type (pair b β)) ( λ x → b) ( is-contr-prod ( is-contr-Σ ( is-contr-function-type (pair a α)) ( λ y → a) ( is-contr-Π (is-prop-is-contr (pair b β) b))) ( is-contr-Σ ( is-contr-function-type (pair a α)) ( λ y → a) ( is-contr-Π (is-prop-is-contr (pair a α) a)))) ``` ### Being contractible is a proposition ```agda module _ {l : Level} {A : UU l} where abstract is-contr-is-contr : is-contr A → is-contr (is-contr A) is-contr-is-contr (pair a α) = is-contr-Σ ( pair a α) ( a) ( is-contr-Π (is-prop-is-contr (pair a α) a)) abstract is-property-is-contr : (H K : is-contr A) → is-contr (H = K) is-property-is-contr H = is-prop-is-contr (is-contr-is-contr H) H ```