# Implicit function types ```agda module foundation.implicit-function-types where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation-core.equivalences open import foundation-core.homotopies open import foundation-core.identity-types ``` </details> ## Properties ### Dependent function types taking implicit arguments are equivalent to dependent function types taking explicit arguments ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where implicit-explicit-Π : ((x : A) → B x) → {x : A} → B x implicit-explicit-Π f {x} = f x explicit-implicit-Π : ({x : A} → B x) → (x : A) → B x explicit-implicit-Π f x = f {x} is-equiv-implicit-explicit-Π : is-equiv implicit-explicit-Π pr1 (pr1 is-equiv-implicit-explicit-Π) = explicit-implicit-Π pr2 (pr1 is-equiv-implicit-explicit-Π) = refl-htpy pr1 (pr2 is-equiv-implicit-explicit-Π) = explicit-implicit-Π pr2 (pr2 is-equiv-implicit-explicit-Π) = refl-htpy is-equiv-explicit-implicit-Π : is-equiv explicit-implicit-Π pr1 (pr1 is-equiv-explicit-implicit-Π) = implicit-explicit-Π pr2 (pr1 is-equiv-explicit-implicit-Π) = refl-htpy pr1 (pr2 is-equiv-explicit-implicit-Π) = implicit-explicit-Π pr2 (pr2 is-equiv-explicit-implicit-Π) = refl-htpy equiv-implicit-explicit-Π : ((x : A) → B x) ≃ ({x : A} → B x) pr1 equiv-implicit-explicit-Π = implicit-explicit-Π pr2 equiv-implicit-explicit-Π = is-equiv-implicit-explicit-Π equiv-explicit-implicit-Π : ({x : A} → B x) ≃ ((x : A) → B x) pr1 equiv-explicit-implicit-Π = explicit-implicit-Π pr2 equiv-explicit-implicit-Π = is-equiv-explicit-implicit-Π ``` ### Equality of explicit functions is equality of implicit functions ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g : (x : A) → B x} where equiv-eq-implicit-eq-explicit-Π : (f = g) ≃ (Id (λ {x} → f x) (λ {x} → g x)) equiv-eq-implicit-eq-explicit-Π = equiv-ap equiv-implicit-explicit-Π f g eq-implicit-eq-explicit-Π : (f = g) → (Id (λ {x} → f x) (λ {x} → g x)) eq-implicit-eq-explicit-Π = map-equiv equiv-eq-implicit-eq-explicit-Π equiv-eq-explicit-eq-implicit-Π : (Id (λ {x} → f x) (λ {x} → g x)) ≃ (f = g) equiv-eq-explicit-eq-implicit-Π = equiv-ap equiv-explicit-implicit-Π (λ {x} → f x) (λ {x} → g x) eq-explicit-eq-implicit-Π : (Id (λ {x} → f x) (λ {x} → g x)) → (f = g) eq-explicit-eq-implicit-Π = map-equiv equiv-eq-explicit-eq-implicit-Π ``` ## See also - Function extensionality for implicit function types is established in [`foundation.function-extensionality`](foundation.function-extensionality.md).