# Terminal objects in a precategory ```agda module category-theory.terminal-objects-precategories where ``` <details><summary>Imports</summary> ```agda open import category-theory.precategories open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.universe-levels ``` </details> ## Idea The **terminal object** of a [precategory](category-theory.precategories.md), if it exists, is an object with the universal property that there is a [unique](foundation-core.contractible-types.md) morphism into it from any object. ## Definition ### The universal property of a terminal object in a precategory ```agda is-terminal-obj-Precategory : {l1 l2 : Level} (C : Precategory l1 l2) → obj-Precategory C → UU (l1 ⊔ l2) is-terminal-obj-Precategory C x = (y : obj-Precategory C) → is-contr (hom-Precategory C y x) module _ {l1 l2 : Level} (C : Precategory l1 l2) (x : obj-Precategory C) (t : is-terminal-obj-Precategory C x) where hom-is-terminal-obj-Precategory : (y : obj-Precategory C) → hom-Precategory C y x hom-is-terminal-obj-Precategory = center ∘ t is-unique-hom-is-terminal-obj-Precategory : (y : obj-Precategory C) → (f : hom-Precategory C y x) → hom-is-terminal-obj-Precategory y = f is-unique-hom-is-terminal-obj-Precategory = contraction ∘ t ``` ### Terminal objects in precategories ```agda terminal-obj-Precategory : {l1 l2 : Level} (C : Precategory l1 l2) → UU (l1 ⊔ l2) terminal-obj-Precategory C = Σ (obj-Precategory C) (is-terminal-obj-Precategory C) module _ {l1 l2 : Level} (C : Precategory l1 l2) (t : terminal-obj-Precategory C) where obj-terminal-obj-Precategory : obj-Precategory C obj-terminal-obj-Precategory = pr1 t is-terminal-obj-terminal-obj-Precategory : is-terminal-obj-Precategory C obj-terminal-obj-Precategory is-terminal-obj-terminal-obj-Precategory = pr2 t hom-terminal-obj-Precategory : (y : obj-Precategory C) → hom-Precategory C y obj-terminal-obj-Precategory hom-terminal-obj-Precategory = hom-is-terminal-obj-Precategory C ( obj-terminal-obj-Precategory) ( is-terminal-obj-terminal-obj-Precategory) is-unique-hom-terminal-obj-Precategory : (y : obj-Precategory C) → (f : hom-Precategory C y obj-terminal-obj-Precategory) → hom-terminal-obj-Precategory y = f is-unique-hom-terminal-obj-Precategory = is-unique-hom-is-terminal-obj-Precategory C ( obj-terminal-obj-Precategory) ( is-terminal-obj-terminal-obj-Precategory) ```