# Endomorphisms ```agda module foundation-core.endomorphisms where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.sets open import foundation.universe-levels open import foundation-core.function-types open import foundation-core.truncated-types open import foundation-core.truncation-levels open import structured-types.pointed-types ``` </details> ## Idea An endomorphism on a type `A` is a map `A → A`. ## Definition ```agda endo : {l : Level} → UU l → UU l endo A = A → A endo-Pointed-Type : {l : Level} → UU l → Pointed-Type l pr1 (endo-Pointed-Type A) = A → A pr2 (endo-Pointed-Type A) = id ``` ## Properties ### If the domain is a set the type of endomorphisms is a set ```agda is-set-endo : {l : Level} {A : UU l} → is-set A → is-set (endo A) is-set-endo is-set-A = is-set-function-type is-set-A endo-Set : {l : Level} → Set l → Set l pr1 (endo-Set A) = endo (type-Set A) pr2 (endo-Set A) = is-set-endo (is-set-type-Set A) ``` ### If the domain is `k`-truncated the type of endomorphisms is `k`-truncated ```agda is-trunc-endo : {l : Level} {A : UU l} (k : 𝕋) → is-trunc k A → is-trunc k (endo A) is-trunc-endo k is-trunc-A = is-trunc-function-type k is-trunc-A endo-Truncated-Type : {l : Level} (k : 𝕋) → Truncated-Type l k → Truncated-Type l k pr1 (endo-Truncated-Type k A) = endo (type-Truncated-Type A) pr2 (endo-Truncated-Type k A) = is-trunc-endo k (is-trunc-type-Truncated-Type A) ``` ## See also - For endomorphisms in a category see [`category-theory.endomorphisms-in-categories`](category-theory.endomorphisms-in-categories.md).