# Equality of dependent pair types ```agda module foundation.equality-dependent-pair-types where open import foundation-core.equality-dependent-pair-types public ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-dependent-functions open import foundation.action-on-identifications-functions open import foundation.dependent-identifications open import foundation.dependent-pair-types open import foundation.functoriality-dependent-pair-types open import foundation.transport-along-identifications open import foundation.type-arithmetic-dependent-pair-types open import foundation.universe-levels open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.identity-types ``` </details> ## Idea The operation [`eq-pair-Σ`](foundation-core.equality-dependent-pair-types.md) can be seen as a "vertical composition" operation that combines an [identification](foundation-core.identity-types.md) and a [dependent identification](foundation.dependent-identifications.md) over it into a single identification. This operation preserves, in the appropriate sense, the groupoidal structure on dependent identifications. ## Properties ### Interchange law of concatenation and `eq-pair-Σ` ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where interchange-concat-eq-pair-Σ : {x y z : A} (p : x = y) (q : y = z) {x' : B x} {y' : B y} {z' : B z} → (p' : dependent-identification B p x' y') (q' : dependent-identification B q y' z') → eq-pair-Σ (p ∙ q) (concat-dependent-identification B p q p' q') = ( eq-pair-Σ p p' ∙ eq-pair-Σ q q') interchange-concat-eq-pair-Σ refl q refl q' = refl ``` ### Interchange law for concatenation and `pair-eq-Σ` ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where interchange-concat-pair-eq-Σ : {x y z : Σ A B} (p : x = y) (q : y = z) → pair-eq-Σ (p ∙ q) = ( pr1 (pair-eq-Σ p) ∙ pr1 (pair-eq-Σ q) , concat-dependent-identification B ( pr1 (pair-eq-Σ p)) ( pr1 (pair-eq-Σ q)) ( pr2 (pair-eq-Σ p)) ( pr2 (pair-eq-Σ q))) interchange-concat-pair-eq-Σ refl q = refl pr1-interchange-concat-pair-eq-Σ : {x y z : Σ A B} (p : x = y) (q : y = z) → pr1 (pair-eq-Σ (p ∙ q)) = (pr1 (pair-eq-Σ p) ∙ pr1 (pair-eq-Σ q)) pr1-interchange-concat-pair-eq-Σ p q = ap pr1 (interchange-concat-pair-eq-Σ p q) ``` ### Distributivity of `inv` over `eq-pair-Σ` ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where distributive-inv-eq-pair-Σ : {x y : A} (p : x = y) {x' : B x} {y' : B y} (p' : dependent-identification B p x' y') → inv (eq-pair-Σ p p') = eq-pair-Σ (inv p) (inv-dependent-identification B p p') distributive-inv-eq-pair-Σ refl refl = refl ``` ### Computing `pair-eq-Σ` at an identification of the form `ap f p` ```agda module _ {l1 l2 l3 : Level} {X : UU l1} {A : UU l2} {B : A → UU l3} (f : X → Σ A B) where pair-eq-Σ-ap : {x y : X} (p : x = y) → pair-eq-Σ (ap f p) = ( ( ap (pr1 ∘ f) p) , ( substitution-law-tr B (pr1 ∘ f) p ∙ apd (pr2 ∘ f) p)) pair-eq-Σ-ap refl = refl pr1-pair-eq-Σ-ap : {x y : X} (p : x = y) → pr1 (pair-eq-Σ (ap f p)) = ap (pr1 ∘ f) p pr1-pair-eq-Σ-ap refl = refl ``` ### Computing action of functions on identifications of the form `eq-pair-Σ p q` ```agda module _ {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {Y : UU l3} (f : Σ A B → Y) where compute-ap-eq-pair-Σ : { x y : A} (p : x = y) {b : B x} {b' : B y} → ( q : dependent-identification B p b b') → ap f (eq-pair-Σ p q) = (ap f (eq-pair-Σ p refl) ∙ ap (ev-pair f y) q) compute-ap-eq-pair-Σ refl refl = refl ``` ### Equality of dependent pair types consists of two orthogonal components ```agda module _ {l1 l2 : Level} {A : UU l1} (B : A → UU l2) where triangle-eq-pair-Σ : { a a' : A} (p : a = a') → { b : B a} {b' : B a'} (q : dependent-identification B p b b') → eq-pair-Σ p q = (eq-pair-Σ p refl ∙ eq-pair-Σ refl q) triangle-eq-pair-Σ refl q = refl ``` ### Computing identifications in iterated dependent pair types #### Computing identifications in dependent pair types of the form Σ (Σ A B) C ```agda module _ {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : Σ A B → UU l3} where Eq-Σ²' : (s t : Σ (Σ A B) C) → UU (l1 ⊔ l2 ⊔ l3) Eq-Σ²' s t = Σ ( Eq-Σ (pr1 s) (pr1 t)) ( λ q → dependent-identification C (eq-pair-Σ' q) (pr2 s) (pr2 t)) equiv-triple-eq-Σ' : (s t : Σ (Σ A B) C) → (s = t) ≃ Eq-Σ²' s t equiv-triple-eq-Σ' s t = ( equiv-Σ ( λ q → ( dependent-identification ( C) ( eq-pair-Σ' q) ( pr2 s) ( pr2 t))) ( equiv-pair-eq-Σ (pr1 s) (pr1 t)) ( λ p → ( equiv-tr ( λ q → dependent-identification C q (pr2 s) (pr2 t)) ( inv (is-section-pair-eq-Σ (pr1 s) (pr1 t) p))))) ∘e ( equiv-pair-eq-Σ s t) triple-eq-Σ' : (s t : Σ (Σ A B) C) → (s = t) → Eq-Σ²' s t triple-eq-Σ' s t = map-equiv (equiv-triple-eq-Σ' s t) ``` #### Computing dependent identifications on the second component ```agda module _ {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : (x : A) → B x → UU l3} where coh-eq-base-Σ² : {s t : Σ A (λ x → Σ (B x) λ y → C x y)} (p : s = t) → eq-base-eq-pair-Σ p = eq-base-eq-pair-Σ (eq-base-eq-pair-Σ (ap (map-inv-associative-Σ' A B C) p)) coh-eq-base-Σ² refl = refl dependent-eq-second-component-eq-Σ² : {s t : Σ A (λ x → Σ (B x) λ y → C x y)} (p : s = t) → dependent-identification B (eq-base-eq-pair-Σ p) (pr1 (pr2 s)) (pr1 (pr2 t)) dependent-eq-second-component-eq-Σ² {s = s} {t = t} p = ( ap (λ q → tr B q (pr1 (pr2 s))) (coh-eq-base-Σ² p)) ∙ ( pr2 ( pr1 ( triple-eq-Σ' ( map-inv-associative-Σ' A B C s) ( map-inv-associative-Σ' A B C t) ( ap (map-inv-associative-Σ' A B C) p)))) ``` #### Computing dependent identifications on the third component ```agda module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : A → UU l2} {C : A → UU l3} (D : (x : A) → B x → C x → UU l4) where coh-eq-base-Σ³ : { s t : Σ A (λ x → Σ (B x) (λ y → Σ (C x) (D x y)))} (p : s = t) → eq-base-eq-pair-Σ p = eq-base-eq-pair-Σ (ap (map-equiv (interchange-Σ-Σ-Σ D)) p) coh-eq-base-Σ³ refl = refl dependent-eq-third-component-eq-Σ³ : { s t : Σ A (λ x → Σ (B x) (λ y → Σ (C x) (D x y)))} (p : s = t) → dependent-identification C ( eq-base-eq-pair-Σ p) ( pr1 (pr2 (pr2 s))) ( pr1 (pr2 (pr2 t))) dependent-eq-third-component-eq-Σ³ {s = s} {t = t} p = ( ap (λ q → tr C q (pr1 (pr2 (pr2 s)))) (coh-eq-base-Σ³ p)) ∙ ( dependent-eq-second-component-eq-Σ² ( ap (map-equiv (interchange-Σ-Σ-Σ D)) p)) ``` ## See also - Equality proofs in cartesian product types are characterized in [`foundation.equality-cartesian-product-types`](foundation.equality-cartesian-product-types.md). - Equality proofs in dependent function types are characterized in [`foundation.equality-dependent-function-types`](foundation.equality-dependent-function-types.md). - Equality proofs in the fiber of a map are characterized in [`foundation.equality-fibers-of-maps`](foundation.equality-fibers-of-maps.md).