# The universal property of the empty type ```agda module foundation.universal-property-empty-type where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.universal-property-equivalences open import foundation.universe-levels open import foundation-core.contractible-types open import foundation-core.empty-types open import foundation-core.equivalences open import foundation-core.function-types ``` </details> ## Idea There is a unique map from the empty type into any type. Similarly, for any type family over an empty type, there is a unique dependent function taking values in this family. ## Properties ```agda module _ {l1 : Level} (A : UU l1) where dependent-universal-property-empty : (l : Level) → UU (l1 ⊔ lsuc l) dependent-universal-property-empty l = (P : A → UU l) → is-contr ((x : A) → P x) universal-property-empty : (l : Level) → UU (l1 ⊔ lsuc l) universal-property-empty l = (X : UU l) → is-contr (A → X) universal-property-dependent-universal-property-empty : ({l : Level} → dependent-universal-property-empty l) → ({l : Level} → universal-property-empty l) universal-property-dependent-universal-property-empty dup-empty {l} X = dup-empty {l} (λ a → X) is-empty-universal-property-empty : ({l : Level} → universal-property-empty l) → is-empty A is-empty-universal-property-empty up-empty = center (up-empty empty) dependent-universal-property-empty-is-empty : {l : Level} (H : is-empty A) → dependent-universal-property-empty l pr1 (dependent-universal-property-empty-is-empty {l} H P) x = ex-falso (H x) pr2 (dependent-universal-property-empty-is-empty {l} H P) f = eq-htpy (λ x → ex-falso (H x)) universal-property-empty-is-empty : {l : Level} (H : is-empty A) → universal-property-empty l universal-property-empty-is-empty {l} H = universal-property-dependent-universal-property-empty ( dependent-universal-property-empty-is-empty H) abstract dependent-universal-property-empty' : {l : Level} (P : empty → UU l) → is-contr ((x : empty) → P x) pr1 (dependent-universal-property-empty' P) = ind-empty {P = P} pr2 (dependent-universal-property-empty' P) f = eq-htpy ind-empty abstract universal-property-empty' : {l : Level} (X : UU l) → is-contr (empty → X) universal-property-empty' X = dependent-universal-property-empty' (λ t → X) abstract uniqueness-empty : {l : Level} (Y : UU l) → ({l' : Level} (X : UU l') → is-contr (Y → X)) → is-equiv (ind-empty {P = λ t → Y}) uniqueness-empty Y H = is-equiv-is-equiv-precomp ind-empty ( λ X → is-equiv-is-contr ( λ g → g ∘ ind-empty) ( H X) ( universal-property-empty' X)) abstract universal-property-empty-is-equiv-ind-empty : {l : Level} (X : UU l) → is-equiv (ind-empty {P = λ t → X}) → ((l' : Level) (Y : UU l') → is-contr (X → Y)) universal-property-empty-is-equiv-ind-empty X is-equiv-ind-empty l' Y = is-contr-is-equiv ( empty → Y) ( λ f → f ∘ ind-empty) ( is-equiv-precomp-is-equiv ind-empty is-equiv-ind-empty Y) ( universal-property-empty' Y) ```