# Preorders ```agda module order-theory.preorders where ``` <details><summary>Imports</summary> ```agda open import category-theory.precategories open import foundation.binary-relations open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.negated-equality open import foundation.negation open import foundation.propositions open import foundation.sets open import foundation.universe-levels ``` </details> ## Idea A **preorder** is a type equipped with a reflexive, transitive relation that is valued in propositions. ## Definition ```agda Preorder : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Preorder l1 l2 = Σ ( UU l1) ( λ X → Σ ( Relation-Prop l2 X) ( λ R → ( is-reflexive (type-Relation-Prop R)) × ( is-transitive (type-Relation-Prop R)))) module _ {l1 l2 : Level} (X : Preorder l1 l2) where type-Preorder : UU l1 type-Preorder = pr1 X leq-Preorder-Prop : Relation-Prop l2 type-Preorder leq-Preorder-Prop = pr1 (pr2 X) leq-Preorder : (x y : type-Preorder) → UU l2 leq-Preorder x y = type-Prop (leq-Preorder-Prop x y) is-prop-leq-Preorder : (x y : type-Preorder) → is-prop (leq-Preorder x y) is-prop-leq-Preorder = is-prop-type-Relation-Prop leq-Preorder-Prop concatenate-eq-leq-Preorder : {x y z : type-Preorder} → x = y → leq-Preorder y z → leq-Preorder x z concatenate-eq-leq-Preorder refl = id concatenate-leq-eq-Preorder : {x y z : type-Preorder} → leq-Preorder x y → y = z → leq-Preorder x z concatenate-leq-eq-Preorder H refl = H le-Preorder-Prop : Relation-Prop (l1 ⊔ l2) type-Preorder le-Preorder-Prop x y = prod-Prop (x ≠ y , is-prop-neg) (leq-Preorder-Prop x y) le-Preorder : Relation (l1 ⊔ l2) type-Preorder le-Preorder x y = type-Prop (le-Preorder-Prop x y) is-prop-le-Preorder : (x y : type-Preorder) → is-prop (le-Preorder x y) is-prop-le-Preorder = is-prop-type-Relation-Prop le-Preorder-Prop is-reflexive-leq-Preorder : is-reflexive (leq-Preorder) is-reflexive-leq-Preorder = pr1 (pr2 (pr2 X)) refl-leq-Preorder : is-reflexive leq-Preorder refl-leq-Preorder = is-reflexive-leq-Preorder is-transitive-leq-Preorder : is-transitive leq-Preorder is-transitive-leq-Preorder = pr2 (pr2 (pr2 X)) transitive-leq-Preorder : is-transitive leq-Preorder transitive-leq-Preorder = is-transitive-leq-Preorder ``` ## Reasoning with inequalities in preorders Inequalities in preorders can be constructed by equational reasoning as follows: ```text calculate-in-Preorder X chain-of-inequalities x ≤ y by ineq-1 in-Preorder X ≤ z by ineq-2 in-Preorder X ≤ v by ineq-3 in-Preorder X ``` Note, however, that in our setup of equational reasoning with inequalities it is not possible to mix inequalities with equalities or strict inequalities. ```agda infixl 1 calculate-in-Preorder_chain-of-inequalities_ infixl 0 step-calculate-in-Preorder calculate-in-Preorder_chain-of-inequalities_ : {l1 l2 : Level} (X : Preorder l1 l2) (x : type-Preorder X) → leq-Preorder X x x calculate-in-Preorder_chain-of-inequalities_ = refl-leq-Preorder step-calculate-in-Preorder : {l1 l2 : Level} (X : Preorder l1 l2) {x y : type-Preorder X} → leq-Preorder X x y → (z : type-Preorder X) → leq-Preorder X y z → leq-Preorder X x z step-calculate-in-Preorder X {x} {y} u z v = is-transitive-leq-Preorder X x y z v u syntax step-calculate-in-Preorder X u z v = u ≤ z by v in-Preorder X ``` ## Properties ### Preorders are precategories whose hom-sets are propositions ```agda module _ {l1 l2 : Level} (X : Preorder l1 l2) where precategory-Preorder : Precategory l1 l2 pr1 precategory-Preorder = type-Preorder X pr1 (pr2 precategory-Preorder) x y = set-Prop (leq-Preorder-Prop X x y) pr1 (pr1 (pr2 (pr2 precategory-Preorder))) {x} {y} {z} = is-transitive-leq-Preorder X x y z pr1 (pr2 (pr1 (pr2 (pr2 precategory-Preorder))) {x} {y} {z} {w} h g f) = eq-is-prop (is-prop-type-Prop (leq-Preorder-Prop X x w)) pr2 (pr2 (pr1 (pr2 (pr2 precategory-Preorder))) {x} {y} {z} {w} h g f) = eq-is-prop (is-prop-type-Prop (leq-Preorder-Prop X x w)) pr1 (pr2 (pr2 (pr2 precategory-Preorder))) = refl-leq-Preorder X pr1 (pr2 (pr2 (pr2 (pr2 precategory-Preorder)))) {x} {y} f = eq-is-prop (is-prop-type-Prop (leq-Preorder-Prop X x y)) pr2 (pr2 (pr2 (pr2 (pr2 precategory-Preorder)))) {x} {y} f = eq-is-prop (is-prop-type-Prop (leq-Preorder-Prop X x y)) module _ {l1 l2 : Level} (C : Precategory l1 l2) ( is-prop-hom-C : (x y : obj-Precategory C) → is-prop (hom-Precategory C x y)) where preorder-is-prop-hom-Precategory : Preorder l1 l2 pr1 preorder-is-prop-hom-Precategory = obj-Precategory C pr1 (pr1 (pr2 preorder-is-prop-hom-Precategory) x y) = hom-Precategory C x y pr2 (pr1 (pr2 preorder-is-prop-hom-Precategory) x y) = is-prop-hom-C x y pr1 (pr2 (pr2 preorder-is-prop-hom-Precategory)) x = id-hom-Precategory C pr2 (pr2 (pr2 preorder-is-prop-hom-Precategory)) x y z = comp-hom-Precategory C ``` It remains to show that these constructions form inverses to eachother.