# `1`-Types ```agda module foundation-core.1-types where ``` <details><summary>Imports</summary> ```agda open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.truncated-types open import foundation.universe-levels open import foundation-core.equivalences open import foundation-core.identity-types open import foundation-core.propositions open import foundation-core.sets open import foundation-core.truncation-levels ``` </details> ## Definition A 1-type is a type that is 1-truncated. ```agda is-1-type : {l : Level} → UU l → UU l is-1-type = is-trunc one-𝕋 1-Type : (l : Level) → UU (lsuc l) 1-Type l = Σ (UU l) is-1-type type-1-Type : {l : Level} → 1-Type l → UU l type-1-Type = pr1 abstract is-1-type-type-1-Type : {l : Level} (A : 1-Type l) → is-1-type (type-1-Type A) is-1-type-type-1-Type = pr2 ``` ## Properties ### The identity type of a 1-type takes values in sets ```agda Id-Set : {l : Level} (X : 1-Type l) (x y : type-1-Type X) → Set l pr1 (Id-Set X x y) = (x = y) pr2 (Id-Set X x y) = is-1-type-type-1-Type X x y ``` ### Any set is a 1-type ```agda abstract is-1-type-is-set : {l : Level} {A : UU l} → is-set A → is-1-type A is-1-type-is-set = is-trunc-succ-is-trunc zero-𝕋 1-type-Set : {l : Level} → Set l → 1-Type l 1-type-Set = truncated-type-succ-Truncated-Type zero-𝕋 ``` ### Any proposition is a 1-type ```agda abstract is-1-type-is-prop : {l : Level} {P : UU l} → is-prop P → is-1-type P is-1-type-is-prop = is-trunc-iterated-succ-is-trunc neg-one-𝕋 2 1-type-Prop : {l : Level} → Prop l → 1-Type l 1-type-Prop P = truncated-type-iterated-succ-Truncated-Type neg-one-𝕋 2 P ``` ### Any contractible type is a 1-type ```agda abstract is-1-type-is-contr : {l : Level} {A : UU l} → is-contr A → is-1-type A is-1-type-is-contr = is-trunc-is-contr one-𝕋 ``` ### The 1-types are closed under equivalences ```agda abstract is-1-type-is-equiv : {l1 l2 : Level} {A : UU l1} (B : UU l2) (f : A → B) → is-equiv f → is-1-type B → is-1-type A is-1-type-is-equiv = is-trunc-is-equiv one-𝕋 abstract is-1-type-equiv : {l1 l2 : Level} {A : UU l1} (B : UU l2) (e : A ≃ B) → is-1-type B → is-1-type A is-1-type-equiv = is-trunc-equiv one-𝕋 abstract is-1-type-is-equiv' : {l1 l2 : Level} (A : UU l1) {B : UU l2} (f : A → B) → is-equiv f → is-1-type A → is-1-type B is-1-type-is-equiv' = is-trunc-is-equiv' one-𝕋 abstract is-1-type-equiv' : {l1 l2 : Level} (A : UU l1) {B : UU l2} (e : A ≃ B) → is-1-type A → is-1-type B is-1-type-equiv' = is-trunc-equiv' one-𝕋 ```