# `1`-Types

```agda
module foundation-core.1-types where
```

<details><summary>Imports</summary>

```agda
open import foundation.contractible-types
open import foundation.dependent-pair-types
open import foundation.truncated-types
open import foundation.universe-levels

open import foundation-core.equivalences
open import foundation-core.identity-types
open import foundation-core.propositions
open import foundation-core.sets
open import foundation-core.truncation-levels
```

</details>

## Definition

A 1-type is a type that is 1-truncated.

```agda
is-1-type : {l : Level}  UU l  UU l
is-1-type = is-trunc one-𝕋

1-Type : (l : Level)  UU (lsuc l)
1-Type l = Σ (UU l) is-1-type

type-1-Type : {l : Level}  1-Type l  UU l
type-1-Type = pr1

abstract
  is-1-type-type-1-Type :
    {l : Level} (A : 1-Type l)  is-1-type (type-1-Type A)
  is-1-type-type-1-Type = pr2
```

## Properties

### The identity type of a 1-type takes values in sets

```agda
Id-Set : {l : Level} (X : 1-Type l) (x y : type-1-Type X)  Set l
pr1 (Id-Set X x y) = (x  y)
pr2 (Id-Set X x y) = is-1-type-type-1-Type X x y
```

### Any set is a 1-type

```agda
abstract
  is-1-type-is-set :
    {l : Level} {A : UU l}  is-set A  is-1-type A
  is-1-type-is-set = is-trunc-succ-is-trunc zero-𝕋

1-type-Set :
  {l : Level}  Set l  1-Type l
1-type-Set = truncated-type-succ-Truncated-Type zero-𝕋
```

### Any proposition is a 1-type

```agda
abstract
  is-1-type-is-prop :
    {l : Level} {P : UU l}  is-prop P  is-1-type P
  is-1-type-is-prop = is-trunc-iterated-succ-is-trunc neg-one-𝕋 2

1-type-Prop :
  {l : Level}  Prop l  1-Type l
1-type-Prop P = truncated-type-iterated-succ-Truncated-Type neg-one-𝕋 2 P
```

### Any contractible type is a 1-type

```agda
abstract
  is-1-type-is-contr :
    {l : Level} {A : UU l}  is-contr A  is-1-type A
  is-1-type-is-contr = is-trunc-is-contr one-𝕋
```

### The 1-types are closed under equivalences

```agda
abstract
  is-1-type-is-equiv :
    {l1 l2 : Level} {A : UU l1} (B : UU l2) (f : A  B)  is-equiv f 
    is-1-type B  is-1-type A
  is-1-type-is-equiv = is-trunc-is-equiv one-𝕋

abstract
  is-1-type-equiv :
    {l1 l2 : Level} {A : UU l1} (B : UU l2) (e : A  B) 
    is-1-type B  is-1-type A
  is-1-type-equiv = is-trunc-equiv one-𝕋

abstract
  is-1-type-is-equiv' :
    {l1 l2 : Level} (A : UU l1) {B : UU l2} (f : A  B) 
    is-equiv f  is-1-type A  is-1-type B
  is-1-type-is-equiv' = is-trunc-is-equiv' one-𝕋

abstract
  is-1-type-equiv' :
    {l1 l2 : Level} (A : UU l1) {B : UU l2} (e : A  B) 
    is-1-type A  is-1-type B
  is-1-type-equiv' = is-trunc-equiv' one-𝕋
```