# The dependent universal property of equivalences ```agda module foundation.dependent-universal-property-equivalences where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-dependent-functions open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.universe-levels open import foundation-core.coherently-invertible-maps open import foundation-core.equivalences open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.path-split-maps open import foundation-core.precomposition-dependent-functions open import foundation-core.transport-along-identifications ``` </details> ## Idea The **dependent universal property of equivalences** states that, for a given map `f : A → B`, the [precomposition of dependent functions](foundation-core.precomposition-dependent-functions.md) by `f` ```text - ∘ f : ((b : B) → C b) → ((a : A) → C (f a)) ``` is an [equivalence](foundation-core.equivalences.md) for every type family `C` over `B`. A map `f : A → B` satisfies the dependent universal property of equivalences if and only if it is an equivalence. ## Definitions ### The dependent universal property of equivalences ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where dependent-universal-property-equiv : UUω dependent-universal-property-equiv = {l : Level} (C : B → UU l) → is-equiv (precomp-Π f C) ``` ## Properties ### If `f` is coherently invertible, then `f` satisfies the dependent universal property of equivalences ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where abstract is-equiv-precomp-Π-is-coherently-invertible : is-coherently-invertible f → dependent-universal-property-equiv f is-equiv-precomp-Π-is-coherently-invertible ( g , is-section-g , is-retraction-g , coh) C = is-equiv-is-invertible ( λ s y → tr C (is-section-g y) (s (g y))) ( λ s → eq-htpy ( λ x → ( ap (λ t → tr C t (s (g (f x)))) (coh x)) ∙ ( substitution-law-tr C f (is-retraction-g x)) ∙ ( apd s (is-retraction-g x)))) ( λ s → eq-htpy (λ y → apd s (is-section-g y))) ``` ### If `f` is an equivalence, then `f` satisfies the dependent universal property of equivalences ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} (H : is-equiv f) where abstract is-equiv-precomp-Π-is-equiv : dependent-universal-property-equiv f is-equiv-precomp-Π-is-equiv = is-equiv-precomp-Π-is-coherently-invertible f ( is-coherently-invertible-is-path-split f ( is-path-split-is-equiv f H)) map-inv-is-equiv-precomp-Π-is-equiv : {l3 : Level} (C : B → UU l3) → ((a : A) → C (f a)) → ((b : B) → C b) map-inv-is-equiv-precomp-Π-is-equiv C = map-inv-is-equiv (is-equiv-precomp-Π-is-equiv C) is-section-map-inv-is-equiv-precomp-Π-is-equiv : {l3 : Level} (C : B → UU l3) → (h : (a : A) → C (f a)) → precomp-Π f C (map-inv-is-equiv-precomp-Π-is-equiv C h) ~ h is-section-map-inv-is-equiv-precomp-Π-is-equiv C h = htpy-eq (is-section-map-inv-is-equiv (is-equiv-precomp-Π-is-equiv C) h) is-retraction-map-inv-is-equiv-precomp-Π-is-equiv : {l3 : Level} (C : B → UU l3) → (g : (b : B) → C b) → map-inv-is-equiv-precomp-Π-is-equiv C (precomp-Π f C g) ~ g is-retraction-map-inv-is-equiv-precomp-Π-is-equiv C g = htpy-eq (is-retraction-map-inv-is-equiv (is-equiv-precomp-Π-is-equiv C) g) equiv-precomp-Π : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (e : A ≃ B) → (C : B → UU l3) → ((b : B) → C b) ≃ ((a : A) → C (map-equiv e a)) pr1 (equiv-precomp-Π e C) = precomp-Π (map-equiv e) C pr2 (equiv-precomp-Π e C) = is-equiv-precomp-Π-is-equiv (is-equiv-map-equiv e) C ```