# Equality on dependent function types ```agda module foundation.equality-dependent-function-types where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.fundamental-theorem-of-identity-types open import foundation.implicit-function-types open import foundation.universe-levels open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.functoriality-dependent-pair-types open import foundation-core.identity-types open import foundation-core.torsorial-type-families open import foundation-core.type-theoretic-principle-of-choice ``` </details> ## Idea Given a family of types `B` over `A`, if we can characterize the [identity types](foundation-core.identity-types.md) of each `B x`, then we can characterize the identity types of `(x : A) → B x`. ### Contractibility ```agda module _ {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (C : (x : A) → B x → UU l3) (is-torsorial-C : (x : A) → is-torsorial (C x)) where is-torsorial-Eq-Π : is-torsorial (λ g → (x : A) → C x (g x)) is-torsorial-Eq-Π = is-contr-equiv' ( (x : A) → Σ (B x) (C x)) ( distributive-Π-Σ) ( is-contr-Π is-torsorial-C) is-torsorial-Eq-implicit-Π : is-torsorial (λ g → {x : A} → C x (g {x})) is-torsorial-Eq-implicit-Π = is-contr-equiv ( Σ ((x : A) → B x) (λ g → (x : A) → C x (g x))) ( equiv-Σ ( λ g → (x : A) → C x (g x)) ( equiv-explicit-implicit-Π) ( λ _ → equiv-explicit-implicit-Π)) ( is-torsorial-Eq-Π) ``` ### Extensionality ```agda module _ {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (f : (x : A) → B x) (Eq-B : (x : A) → B x → UU l3) where map-extensionality-Π : ( (x : A) (y : B x) → (f x = y) ≃ Eq-B x y) → ( g : (x : A) → B x) → f = g → ((x : A) → Eq-B x (g x)) map-extensionality-Π e .f refl x = map-equiv (e x (f x)) refl abstract is-equiv-map-extensionality-Π : (e : (x : A) (y : B x) → (f x = y) ≃ Eq-B x y) → (g : (x : A) → B x) → is-equiv (map-extensionality-Π e g) is-equiv-map-extensionality-Π e = fundamental-theorem-id ( is-torsorial-Eq-Π Eq-B ( λ x → fundamental-theorem-id' ( λ y → map-equiv (e x y)) ( λ y → is-equiv-map-equiv (e x y)))) ( map-extensionality-Π e) extensionality-Π : ( (x : A) (y : B x) → (f x = y) ≃ Eq-B x y) → ( g : (x : A) → B x) → (f = g) ≃ ((x : A) → Eq-B x (g x)) pr1 (extensionality-Π e g) = map-extensionality-Π e g pr2 (extensionality-Π e g) = is-equiv-map-extensionality-Π e g ``` ## See also - Equality proofs in the fiber of a map are characterized in [`foundation.equality-fibers-of-maps`](foundation.equality-fibers-of-maps.md). - Equality proofs in cartesian product types are characterized in [`foundation.equality-cartesian-product-types`](foundation.equality-cartesian-product-types.md). - Equality proofs in dependent pair types are characterized in [`foundation.equality-dependent-pair-types`](foundation.equality-dependent-pair-types.md). - Function extensionality is postulated in [`foundation.function-extensionality`](foundation.function-extensionality.md).