# Equality in the fibers of a map ```agda module foundation.equality-fibers-of-maps where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.families-of-equivalences open import foundation.identity-types open import foundation.transport-along-identifications open import foundation.universe-levels open import foundation-core.equality-dependent-pair-types open import foundation-core.equivalences open import foundation-core.fibers-of-maps open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies ``` </details> ## Idea In the file [`foundation-core.fibers-of-maps`](foundation-core.fibers-of-maps.md) we already gave one characterization of the identity type of `fiber f b`, for an arbitrary map `f : A → B`. Here we give a second characterization, using the fibers of the action on identifications of `f`. ## Theorem For any map `f : A → B` any `b : B` and any `x y : fiber f b`, there is an equivalence ```text (x = y) ≃ fiber (ap f) (pr2 x ∙ inv (pr2 y)) ``` ### Proof ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) {b : B} where fiber-ap-eq-fiber-fiberwise : (s t : fiber f b) (p : pr1 s = pr1 t) → tr (λ (a : A) → f a = b) p (pr2 s) = pr2 t → ap f p = pr2 s ∙ inv (pr2 t) fiber-ap-eq-fiber-fiberwise (.x' , p) (x' , refl) refl = inv ∘ concat right-unit refl abstract is-fiberwise-equiv-fiber-ap-eq-fiber-fiberwise : (s t : fiber f b) → is-fiberwise-equiv (fiber-ap-eq-fiber-fiberwise s t) is-fiberwise-equiv-fiber-ap-eq-fiber-fiberwise (x , y) (.x , refl) refl = is-equiv-comp ( inv) ( concat right-unit refl) ( is-equiv-concat right-unit refl) ( is-equiv-inv (y ∙ refl) refl) fiber-ap-eq-fiber : (s t : fiber f b) → s = t → fiber (ap f {x = pr1 s} {y = pr1 t}) (pr2 s ∙ inv (pr2 t)) pr1 (fiber-ap-eq-fiber s .s refl) = refl pr2 (fiber-ap-eq-fiber s .s refl) = inv (right-inv (pr2 s)) triangle-fiber-ap-eq-fiber : (s t : fiber f b) → fiber-ap-eq-fiber s t ~ tot (fiber-ap-eq-fiber-fiberwise s t) ∘ pair-eq-Σ {s = s} {t} triangle-fiber-ap-eq-fiber (x , refl) .(x , refl) refl = refl abstract is-equiv-fiber-ap-eq-fiber : (s t : fiber f b) → is-equiv (fiber-ap-eq-fiber s t) is-equiv-fiber-ap-eq-fiber s t = is-equiv-left-map-triangle ( fiber-ap-eq-fiber s t) ( tot (fiber-ap-eq-fiber-fiberwise s t)) ( pair-eq-Σ {s = s} {t}) ( triangle-fiber-ap-eq-fiber s t) ( is-equiv-pair-eq-Σ s t) ( is-equiv-tot-is-fiberwise-equiv ( is-fiberwise-equiv-fiber-ap-eq-fiber-fiberwise s t)) equiv-fiber-ap-eq-fiber : (s t : fiber f b) → (s = t) ≃ fiber (ap f {x = pr1 s} {y = pr1 t}) (pr2 s ∙ inv (pr2 t)) pr1 (equiv-fiber-ap-eq-fiber s t) = fiber-ap-eq-fiber s t pr2 (equiv-fiber-ap-eq-fiber s t) = is-equiv-fiber-ap-eq-fiber s t map-inv-fiber-ap-eq-fiber : (s t : fiber f b) → fiber (ap f {x = pr1 s} {y = pr1 t}) (pr2 s ∙ inv (pr2 t)) → s = t map-inv-fiber-ap-eq-fiber (x , refl) (.x , p) (refl , u) = eq-pair-eq-pr2 (ap inv u ∙ inv-inv p) ap-pr1-map-inv-fiber-ap-eq-fiber : (s t : fiber f b) → (v : fiber (ap f {x = pr1 s} {y = pr1 t}) (pr2 s ∙ inv (pr2 t))) → ap pr1 (map-inv-fiber-ap-eq-fiber s t v) = pr1 v ap-pr1-map-inv-fiber-ap-eq-fiber (x , refl) (.x , p) (refl , u) = ap-pr1-eq-pair-eq-pr2 (ap inv u ∙ inv-inv p) module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (x y : A) where eq-fiber-fiber-ap : (q : f x = f y) → (x , q) = (y , refl) → fiber (ap f {x} {y}) q eq-fiber-fiber-ap q = tr (fiber (ap f)) right-unit ∘ fiber-ap-eq-fiber f (x , q) (y , refl) abstract is-equiv-eq-fiber-fiber-ap : (q : (f x) = f y) → is-equiv (eq-fiber-fiber-ap q) is-equiv-eq-fiber-fiber-ap q = is-equiv-comp ( tr (fiber (ap f)) right-unit) ( fiber-ap-eq-fiber f (x , q) (y , refl)) ( is-equiv-fiber-ap-eq-fiber f (x , q) (y , refl)) ( is-equiv-tr (fiber (ap f)) right-unit) ``` ## Table of files about fibers of maps The following table lists files that are about fibers of maps as a general concept. {{#include tables/fibers-of-maps.md}} ## See also - Equality proofs in dependent pair types are characterized in [`foundation.equality-dependent-pair-types`](foundation.equality-dependent-pair-types.md). - Equality proofs in dependent function types are characterized in [`foundation.equality-dependent-function-types`](foundation.equality-dependent-function-types.md).