# The universal property of the unit type ```agda module foundation.universal-property-unit-type where ``` <details><summary>Imports</summary> ```agda open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.unit-type open import foundation.universal-property-equivalences open import foundation.universe-levels open import foundation-core.constant-maps open import foundation-core.equivalences open import foundation-core.homotopies open import foundation-core.precomposition-functions ``` </details> ## Idea The universal property of the unit type characterizes maps out of the unit type. Similarly, the dependent universal property of the unit type characterizes dependent functions out of the unit type. In `foundation.contractible-types` we have alread proven related universal properties of contractible types. ## Properties ```agda ev-star : {l : Level} (P : unit → UU l) → ((x : unit) → P x) → P star ev-star P f = f star ev-star' : {l : Level} (Y : UU l) → (unit → Y) → Y ev-star' Y = ev-star (λ t → Y) abstract dependent-universal-property-unit : {l : Level} (P : unit → UU l) → is-equiv (ev-star P) dependent-universal-property-unit = dependent-universal-property-contr-is-contr star is-contr-unit equiv-dependent-universal-property-unit : {l : Level} (P : unit → UU l) → ((x : unit) → P x) ≃ P star pr1 (equiv-dependent-universal-property-unit P) = ev-star P pr2 (equiv-dependent-universal-property-unit P) = dependent-universal-property-unit P abstract universal-property-unit : {l : Level} (Y : UU l) → is-equiv (ev-star' Y) universal-property-unit Y = dependent-universal-property-unit (λ t → Y) equiv-universal-property-unit : {l : Level} (Y : UU l) → (unit → Y) ≃ Y pr1 (equiv-universal-property-unit Y) = ev-star' Y pr2 (equiv-universal-property-unit Y) = universal-property-unit Y abstract is-equiv-point-is-contr : {l1 : Level} {X : UU l1} (x : X) → is-contr X → is-equiv (point x) is-equiv-point-is-contr x is-contr-X = is-equiv-is-contr (point x) is-contr-unit is-contr-X abstract is-equiv-point-universal-property-unit : {l1 : Level} (X : UU l1) (x : X) → ({l2 : Level} (Y : UU l2) → is-equiv (λ (f : X → Y) → f x)) → is-equiv (point x) is-equiv-point-universal-property-unit X x H = is-equiv-is-equiv-precomp ( point x) ( λ Y → is-equiv-right-factor ( ev-star' Y) ( precomp (point x) Y) ( universal-property-unit Y) ( H Y)) abstract universal-property-unit-is-equiv-point : {l1 : Level} {X : UU l1} (x : X) → is-equiv (point x) → ({l2 : Level} (Y : UU l2) → is-equiv (λ (f : X → Y) → f x)) universal-property-unit-is-equiv-point x is-equiv-point Y = is-equiv-comp ( ev-star' Y) ( precomp (point x) Y) ( is-equiv-precomp-is-equiv (point x) is-equiv-point Y) ( universal-property-unit Y) abstract universal-property-unit-is-contr : {l1 : Level} {X : UU l1} (x : X) → is-contr X → ({l2 : Level} (Y : UU l2) → is-equiv (λ (f : X → Y) → f x)) universal-property-unit-is-contr x is-contr-X = universal-property-unit-is-equiv-point x ( is-equiv-point-is-contr x is-contr-X) abstract is-equiv-diagonal-is-equiv-point : {l1 : Level} {X : UU l1} (x : X) → is-equiv (point x) → ({l2 : Level} (Y : UU l2) → is-equiv (λ y → const X Y y)) is-equiv-diagonal-is-equiv-point {X = X} x is-equiv-point Y = is-equiv-is-section ( universal-property-unit-is-equiv-point x is-equiv-point Y) ( refl-htpy) ```