# Posets ```agda module order-theory.posets where ``` <details><summary>Imports</summary> ```agda open import category-theory.categories open import category-theory.isomorphisms-in-precategories open import category-theory.precategories open import foundation.binary-relations open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import order-theory.preorders ``` </details> ## Idea A **poset** is a [set](foundation-core.sets.md) [equipped](foundation.structure.md) with a reflexive, antisymmetric, transitive [relation](foundation.binary-relations.md) that takes values in [propositions](foundation-core.propositions.md). ## Definition ```agda is-antisymmetric-leq-Preorder : {l1 l2 : Level} (P : Preorder l1 l2) → UU (l1 ⊔ l2) is-antisymmetric-leq-Preorder P = is-antisymmetric (leq-Preorder P) Poset : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Poset l1 l2 = Σ (Preorder l1 l2) (is-antisymmetric-leq-Preorder) module _ {l1 l2 : Level} (X : Poset l1 l2) where preorder-Poset : Preorder l1 l2 preorder-Poset = pr1 X type-Poset : UU l1 type-Poset = type-Preorder preorder-Poset leq-Poset-Prop : (x y : type-Poset) → Prop l2 leq-Poset-Prop = leq-Preorder-Prop preorder-Poset leq-Poset : (x y : type-Poset) → UU l2 leq-Poset = leq-Preorder preorder-Poset is-prop-leq-Poset : (x y : type-Poset) → is-prop (leq-Poset x y) is-prop-leq-Poset = is-prop-leq-Preorder preorder-Poset concatenate-eq-leq-Poset : {x y z : type-Poset} → x = y → leq-Poset y z → leq-Poset x z concatenate-eq-leq-Poset = concatenate-eq-leq-Preorder preorder-Poset concatenate-leq-eq-Poset : {x y z : type-Poset} → leq-Poset x y → y = z → leq-Poset x z concatenate-leq-eq-Poset = concatenate-leq-eq-Preorder preorder-Poset refl-leq-Poset : is-reflexive leq-Poset refl-leq-Poset = refl-leq-Preorder preorder-Poset transitive-leq-Poset : is-transitive leq-Poset transitive-leq-Poset = transitive-leq-Preorder preorder-Poset le-Poset-Prop : (x y : type-Poset) → Prop (l1 ⊔ l2) le-Poset-Prop = le-Preorder-Prop preorder-Poset le-Poset : (x y : type-Poset) → UU (l1 ⊔ l2) le-Poset = le-Preorder preorder-Poset is-prop-le-Poset : (x y : type-Poset) → is-prop (le-Poset x y) is-prop-le-Poset = is-prop-le-Preorder preorder-Poset antisymmetric-leq-Poset : is-antisymmetric leq-Poset antisymmetric-leq-Poset = pr2 X is-set-type-Poset : is-set type-Poset is-set-type-Poset = is-set-prop-in-id ( λ x y → leq-Poset x y × leq-Poset y x) ( λ x y → is-prop-prod (is-prop-leq-Poset x y) (is-prop-leq-Poset y x)) ( λ x → refl-leq-Poset x , refl-leq-Poset x) ( λ x y (H , K) → antisymmetric-leq-Poset x y H K) set-Poset : Set l1 pr1 set-Poset = type-Poset pr2 set-Poset = is-set-type-Poset ``` ## Reasoning with inequalities in posets Inequalities in preorders can be constructed by equational reasoning as follows: ```text calculate-in-Poset X chain-of-inequalities x ≤ y by ineq-1 in-Poset X ≤ z by ineq-2 in-Poset X ≤ v by ineq-3 in-Poset X ``` Note, however, that in our setup of equational reasoning with inequalities it is not possible to mix inequalities with equalities or strict inequalities. ```agda infixl 1 calculate-in-Poset_chain-of-inequalities_ infixl 0 step-calculate-in-Poset calculate-in-Poset_chain-of-inequalities_ : {l1 l2 : Level} (X : Poset l1 l2) (x : type-Poset X) → leq-Poset X x x calculate-in-Poset_chain-of-inequalities_ = refl-leq-Poset step-calculate-in-Poset : {l1 l2 : Level} (X : Poset l1 l2) {x y : type-Poset X} → leq-Poset X x y → (z : type-Poset X) → leq-Poset X y z → leq-Poset X x z step-calculate-in-Poset X {x} {y} u z v = transitive-leq-Poset X x y z v u syntax step-calculate-in-Poset X u z v = u ≤ z by v in-Poset X ``` ## Properties ### Posets are categories whose underlying hom-sets are propositions ```agda module _ {l1 l2 : Level} (X : Poset l1 l2) where precategory-Poset : Precategory l1 l2 precategory-Poset = precategory-Preorder (preorder-Poset X) is-category-precategory-Poset : is-category-Precategory precategory-Poset is-category-precategory-Poset x y = is-equiv-is-prop ( is-set-type-Poset X x y) ( is-prop-iso-is-prop-hom-Precategory precategory-Poset ( is-prop-leq-Poset X x y)) ( λ f → antisymmetric-leq-Poset X x y ( hom-iso-Precategory precategory-Poset f) ( hom-inv-iso-Precategory precategory-Poset f)) category-Poset : Category l1 l2 pr1 category-Poset = precategory-Poset pr2 category-Poset = is-category-precategory-Poset module _ {l1 l2 : Level} (C : Category l1 l2) (is-prop-hom-C : (x y : obj-Category C) → is-prop (hom-Category C x y)) where preorder-is-prop-hom-Category : Preorder l1 l2 preorder-is-prop-hom-Category = preorder-is-prop-hom-Precategory (precategory-Category C) (is-prop-hom-C) poset-is-prop-hom-Category : Poset l1 l2 pr1 poset-is-prop-hom-Category = preorder-is-prop-hom-Category pr2 poset-is-prop-hom-Category x y f g = map-inv-is-equiv ( is-category-Category C x y) ( iso-is-prop-hom-Precategory ( precategory-Category C) is-prop-hom-C f g) ``` It remains to show that these constructions form inverses to eachother.