# Equality of natural numbers ```agda module elementary-number-theory.equality-natural-numbers where ``` <details><summary>Imports</summary> ```agda open import elementary-number-theory.natural-numbers open import foundation.action-on-identifications-functions open import foundation.coproduct-types open import foundation.decidable-equality open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.equivalences open import foundation.function-types open import foundation.fundamental-theorem-of-identity-types open import foundation.identity-types open import foundation.propositions open import foundation.set-truncations open import foundation.sets open import foundation.unit-type open import foundation.universe-levels open import foundation-core.decidable-propositions open import foundation-core.torsorial-type-families ``` </details> ## Definitions ### Observational equality on the natural numbers ```agda Eq-ℕ : ℕ → ℕ → UU lzero Eq-ℕ zero-ℕ zero-ℕ = unit Eq-ℕ zero-ℕ (succ-ℕ n) = empty Eq-ℕ (succ-ℕ m) zero-ℕ = empty Eq-ℕ (succ-ℕ m) (succ-ℕ n) = Eq-ℕ m n ``` ## Properties ### The type of natural numbers is a set ```agda abstract is-prop-Eq-ℕ : (n m : ℕ) → is-prop (Eq-ℕ n m) is-prop-Eq-ℕ zero-ℕ zero-ℕ = is-prop-unit is-prop-Eq-ℕ zero-ℕ (succ-ℕ m) = is-prop-empty is-prop-Eq-ℕ (succ-ℕ n) zero-ℕ = is-prop-empty is-prop-Eq-ℕ (succ-ℕ n) (succ-ℕ m) = is-prop-Eq-ℕ n m refl-Eq-ℕ : (n : ℕ) → Eq-ℕ n n refl-Eq-ℕ zero-ℕ = star refl-Eq-ℕ (succ-ℕ n) = refl-Eq-ℕ n Eq-eq-ℕ : {x y : ℕ} → x = y → Eq-ℕ x y Eq-eq-ℕ {x} {.x} refl = refl-Eq-ℕ x eq-Eq-ℕ : (x y : ℕ) → Eq-ℕ x y → x = y eq-Eq-ℕ zero-ℕ zero-ℕ e = refl eq-Eq-ℕ (succ-ℕ x) (succ-ℕ y) e = ap succ-ℕ (eq-Eq-ℕ x y e) abstract is-set-ℕ : is-set ℕ is-set-ℕ = is-set-prop-in-id Eq-ℕ is-prop-Eq-ℕ refl-Eq-ℕ eq-Eq-ℕ ℕ-Set : Set lzero pr1 ℕ-Set = ℕ pr2 ℕ-Set = is-set-ℕ ``` ### The property of being zero ```agda is-prop-is-zero-ℕ : (n : ℕ) → is-prop (is-zero-ℕ n) is-prop-is-zero-ℕ n = is-set-ℕ n zero-ℕ is-zero-ℕ-Prop : ℕ → Prop lzero pr1 (is-zero-ℕ-Prop n) = is-zero-ℕ n pr2 (is-zero-ℕ-Prop n) = is-prop-is-zero-ℕ n ``` ### The property of being one ```agda is-prop-is-one-ℕ : (n : ℕ) → is-prop (is-one-ℕ n) is-prop-is-one-ℕ n = is-set-ℕ n 1 is-one-ℕ-Prop : ℕ → Prop lzero pr1 (is-one-ℕ-Prop n) = is-one-ℕ n pr2 (is-one-ℕ-Prop n) = is-prop-is-one-ℕ n ``` ### The type of natural numbers has decidable equality ```agda is-decidable-Eq-ℕ : (m n : ℕ) → is-decidable (Eq-ℕ m n) is-decidable-Eq-ℕ zero-ℕ zero-ℕ = inl star is-decidable-Eq-ℕ zero-ℕ (succ-ℕ n) = inr id is-decidable-Eq-ℕ (succ-ℕ m) zero-ℕ = inr id is-decidable-Eq-ℕ (succ-ℕ m) (succ-ℕ n) = is-decidable-Eq-ℕ m n has-decidable-equality-ℕ : has-decidable-equality ℕ has-decidable-equality-ℕ x y = is-decidable-iff (eq-Eq-ℕ x y) Eq-eq-ℕ (is-decidable-Eq-ℕ x y) decidable-eq-ℕ : ℕ → ℕ → Decidable-Prop lzero pr1 (decidable-eq-ℕ m n) = (m = n) pr1 (pr2 (decidable-eq-ℕ m n)) = is-set-ℕ m n pr2 (pr2 (decidable-eq-ℕ m n)) = has-decidable-equality-ℕ m n is-decidable-is-zero-ℕ : (n : ℕ) → is-decidable (is-zero-ℕ n) is-decidable-is-zero-ℕ n = has-decidable-equality-ℕ n zero-ℕ is-decidable-is-zero-ℕ' : (n : ℕ) → is-decidable (is-zero-ℕ' n) is-decidable-is-zero-ℕ' n = has-decidable-equality-ℕ zero-ℕ n is-decidable-is-nonzero-ℕ : (n : ℕ) → is-decidable (is-nonzero-ℕ n) is-decidable-is-nonzero-ℕ n = is-decidable-neg (is-decidable-is-zero-ℕ n) is-decidable-is-one-ℕ : (n : ℕ) → is-decidable (is-one-ℕ n) is-decidable-is-one-ℕ n = has-decidable-equality-ℕ n 1 is-decidable-is-one-ℕ' : (n : ℕ) → is-decidable (is-one-ℕ' n) is-decidable-is-one-ℕ' n = has-decidable-equality-ℕ 1 n is-decidable-is-not-one-ℕ : (x : ℕ) → is-decidable (is-not-one-ℕ x) is-decidable-is-not-one-ℕ x = is-decidable-neg (is-decidable-is-one-ℕ x) ``` ## The full characterization of the identity type of `ℕ` ```agda map-total-Eq-ℕ : (m : ℕ) → Σ ℕ (Eq-ℕ m) → Σ ℕ (Eq-ℕ (succ-ℕ m)) pr1 (map-total-Eq-ℕ m (n , e)) = succ-ℕ n pr2 (map-total-Eq-ℕ m (n , e)) = e is-torsorial-Eq-ℕ : (m : ℕ) → is-torsorial (Eq-ℕ m) pr1 (pr1 (is-torsorial-Eq-ℕ m)) = m pr2 (pr1 (is-torsorial-Eq-ℕ m)) = refl-Eq-ℕ m pr2 (is-torsorial-Eq-ℕ zero-ℕ) (pair zero-ℕ star) = refl pr2 (is-torsorial-Eq-ℕ (succ-ℕ m)) (pair (succ-ℕ n) e) = ap (map-total-Eq-ℕ m) (pr2 (is-torsorial-Eq-ℕ m) (pair n e)) is-equiv-Eq-eq-ℕ : {m n : ℕ} → is-equiv (Eq-eq-ℕ {m} {n}) is-equiv-Eq-eq-ℕ {m} {n} = fundamental-theorem-id ( is-torsorial-Eq-ℕ m) ( λ y → Eq-eq-ℕ {m} {y}) ( n) ``` ### The type of natural numbers is its own set truncation ```agda equiv-unit-trunc-ℕ-Set : ℕ ≃ type-trunc-Set ℕ equiv-unit-trunc-ℕ-Set = equiv-unit-trunc-Set ℕ-Set ```