# Truncated maps ```agda module foundation-core.truncated-maps where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.equality-fibers-of-maps open import foundation.universe-levels open import foundation-core.commuting-squares-of-maps open import foundation-core.contractible-maps open import foundation-core.equivalences open import foundation-core.fibers-of-maps open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.truncated-types open import foundation-core.truncation-levels ``` </details> ## Idea A map is `k`-truncated if its fibers are `k`-truncated. ## Definition ```agda module _ {l1 l2 : Level} (k : 𝕋) where is-trunc-map : {A : UU l1} {B : UU l2} → (A → B) → UU (l1 ⊔ l2) is-trunc-map f = (y : _) → is-trunc k (fiber f y) trunc-map : (A : UU l1) (B : UU l2) → UU (l1 ⊔ l2) trunc-map A B = Σ (A → B) is-trunc-map module _ {l1 l2 : Level} {k : 𝕋} {A : UU l1} {B : UU l2} where map-trunc-map : trunc-map k A B → A → B map-trunc-map = pr1 abstract is-trunc-map-map-trunc-map : (f : trunc-map k A B) → is-trunc-map k (map-trunc-map f) is-trunc-map-map-trunc-map = pr2 ``` ## Properties ### If a map is `k`-truncated, then it is `k+1`-truncated ```agda abstract is-trunc-map-succ-is-trunc-map : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {f : A → B} → is-trunc-map k f → is-trunc-map (succ-𝕋 k) f is-trunc-map-succ-is-trunc-map k is-trunc-f b = is-trunc-succ-is-trunc k (is-trunc-f b) ``` ### Any contractible map is `k`-truncated ```agda is-trunc-map-is-contr-map : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {f : A → B} → is-contr-map f → is-trunc-map k f is-trunc-map-is-contr-map neg-two-𝕋 H = H is-trunc-map-is-contr-map (succ-𝕋 k) H = is-trunc-map-succ-is-trunc-map k (is-trunc-map-is-contr-map k H) ``` ### Any equivalence is `k`-truncated ```agda module _ {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} where is-trunc-map-is-equiv : {f : A → B} → is-equiv f → is-trunc-map k f is-trunc-map-is-equiv H = is-trunc-map-is-contr-map k (is-contr-map-is-equiv H) is-trunc-map-equiv : (e : A ≃ B) → is-trunc-map k (map-equiv e) is-trunc-map-equiv e = is-trunc-map-is-equiv (is-equiv-map-equiv e) ``` ### The identity function is `k`-truncated ```agda is-trunc-map-id : {l1 : Level} (k : 𝕋) {A : UU l1} → is-trunc-map k (id {A = A}) is-trunc-map-id k = is-trunc-map-is-equiv k is-equiv-id ``` ### A map is `k+1`-truncated if and only if its action on identifications is `k`-truncated ```agda module _ {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) where abstract is-trunc-map-is-trunc-map-ap : ((x y : A) → is-trunc-map k (ap f {x} {y})) → is-trunc-map (succ-𝕋 k) f is-trunc-map-is-trunc-map-ap is-trunc-map-ap-f b (pair x p) (pair x' p') = is-trunc-equiv k ( fiber (ap f) (p ∙ (inv p'))) ( equiv-fiber-ap-eq-fiber f (pair x p) (pair x' p')) ( is-trunc-map-ap-f x x' (p ∙ (inv p'))) abstract is-trunc-map-ap-is-trunc-map : is-trunc-map (succ-𝕋 k) f → (x y : A) → is-trunc-map k (ap f {x} {y}) is-trunc-map-ap-is-trunc-map is-trunc-map-f x y p = is-trunc-is-equiv' k ( pair x p = pair y refl) ( eq-fiber-fiber-ap f x y p) ( is-equiv-eq-fiber-fiber-ap f x y p) ( is-trunc-map-f (f y) (pair x p) (pair y refl)) ``` ### The domain of any `k`-truncated map into a `k+1`-truncated type is `k+1`-truncated ```agda is-trunc-is-trunc-map-into-is-trunc : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) → is-trunc (succ-𝕋 k) B → is-trunc-map k f → is-trunc (succ-𝕋 k) A is-trunc-is-trunc-map-into-is-trunc neg-two-𝕋 f is-trunc-B is-trunc-map-f = is-trunc-is-equiv _ _ f (is-equiv-is-contr-map is-trunc-map-f) is-trunc-B is-trunc-is-trunc-map-into-is-trunc (succ-𝕋 k) f is-trunc-B is-trunc-map-f a a' = is-trunc-is-trunc-map-into-is-trunc ( k) ( ap f) ( is-trunc-B (f a) (f a')) ( is-trunc-map-ap-is-trunc-map k f is-trunc-map-f a a') ``` ### A family of types is a family of `k`-truncated types if and only of the projection map is `k`-truncated ```agda module _ {l1 l2 : Level} (k : 𝕋) {A : UU l1} where abstract is-trunc-map-pr1 : {B : A → UU l2} → ((x : A) → is-trunc k (B x)) → is-trunc-map k (pr1 {l1} {l2} {A} {B}) is-trunc-map-pr1 {B} H x = is-trunc-equiv k (B x) (equiv-fiber-pr1 B x) (H x) pr1-trunc-map : (B : A → Truncated-Type l2 k) → trunc-map k (Σ A (λ x → pr1 (B x))) A pr1 (pr1-trunc-map B) = pr1 pr2 (pr1-trunc-map B) = is-trunc-map-pr1 (λ x → pr2 (B x)) abstract is-trunc-is-trunc-map-pr1 : (B : A → UU l2) → is-trunc-map k (pr1 {l1} {l2} {A} {B}) → (x : A) → is-trunc k (B x) is-trunc-is-trunc-map-pr1 B is-trunc-map-pr1 x = is-trunc-equiv k ( fiber pr1 x) ( inv-equiv-fiber-pr1 B x) ( is-trunc-map-pr1 x) ``` ### Any map between `k`-truncated types is `k`-truncated ```agda abstract is-trunc-map-is-trunc-domain-codomain : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {f : A → B} → is-trunc k A → is-trunc k B → is-trunc-map k f is-trunc-map-is-trunc-domain-codomain k {f = f} is-trunc-A is-trunc-B b = is-trunc-Σ is-trunc-A (λ x → is-trunc-Id is-trunc-B (f x) b) ``` ### A type family over a `k`-truncated type A is a family of `k`-truncated types if its total space is `k`-truncated ```agda abstract is-trunc-fam-is-trunc-Σ : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : A → UU l2} → is-trunc k A → is-trunc k (Σ A B) → (x : A) → is-trunc k (B x) is-trunc-fam-is-trunc-Σ k {B = B} is-trunc-A is-trunc-ΣAB x = is-trunc-equiv' k ( fiber pr1 x) ( equiv-fiber-pr1 B x) ( is-trunc-map-is-trunc-domain-codomain k is-trunc-ΣAB is-trunc-A x) ``` ### Truncated maps are closed under homotopies ```agda abstract is-trunc-map-htpy : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {f g : A → B} → f ~ g → is-trunc-map k g → is-trunc-map k f is-trunc-map-htpy k {A} {B} {f} {g} H is-trunc-g b = is-trunc-is-equiv k ( Σ A (λ z → g z = b)) ( fiber-triangle f g id H b) ( is-fiberwise-equiv-is-equiv-triangle f g id H is-equiv-id b) ( is-trunc-g b) ``` ### Truncated maps are closed under composition ```agda abstract is-trunc-map-comp : {l1 l2 l3 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {X : UU l3} (g : B → X) (h : A → B) → is-trunc-map k g → is-trunc-map k h → is-trunc-map k (g ∘ h) is-trunc-map-comp k g h is-trunc-g is-trunc-h x = is-trunc-is-equiv k ( Σ (fiber g x) (λ t → fiber h (pr1 t))) ( map-compute-fiber-comp g h x) ( is-equiv-map-compute-fiber-comp g h x) ( is-trunc-Σ ( is-trunc-g x) ( λ t → is-trunc-h (pr1 t))) comp-trunc-map : {l1 l2 l3 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {X : UU l3} (g : trunc-map k B X) (h : trunc-map k A B) → trunc-map k A X pr1 (comp-trunc-map k g h) = pr1 g ∘ pr1 h pr2 (comp-trunc-map k g h) = is-trunc-map-comp k (pr1 g) (pr1 h) (pr2 g) (pr2 h) ``` ### In a commuting triangle `f ~ g ∘ h`, if `g` and `h` are truncated maps, then `f` is a truncated map ```agda abstract is-trunc-map-left-map-triangle : {l1 l2 l3 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → is-trunc-map k g → is-trunc-map k h → is-trunc-map k f is-trunc-map-left-map-triangle k f g h H is-trunc-g is-trunc-h = is-trunc-map-htpy k H ( is-trunc-map-comp k g h is-trunc-g is-trunc-h) ``` ### In a commuting triangle `f ~ g ∘ h`, if `f` and `g` are truncated maps, then `h` is a truncated map ```agda abstract is-trunc-map-top-map-triangle : {l1 l2 l3 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → is-trunc-map k g → is-trunc-map k f → is-trunc-map k h is-trunc-map-top-map-triangle k {A} f g h H is-trunc-g is-trunc-f b = is-trunc-fam-is-trunc-Σ k ( is-trunc-g (g b)) ( is-trunc-is-equiv' k ( Σ A (λ z → g (h z) = g b)) ( map-compute-fiber-comp g h (g b)) ( is-equiv-map-compute-fiber-comp g h (g b)) ( is-trunc-map-htpy k (inv-htpy H) is-trunc-f (g b))) ( pair b refl) ``` ### If a composite `g ∘ h` and its left factor `g` are truncated maps, then its right factor `h` is a truncated map ```agda is-trunc-map-right-factor : {l1 l2 l3 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {X : UU l3} (g : B → X) (h : A → B) → is-trunc-map k g → is-trunc-map k (g ∘ h) → is-trunc-map k h is-trunc-map-right-factor k {A} g h = is-trunc-map-top-map-triangle k (g ∘ h) g h refl-htpy ``` ### In a commuting square with the left and right maps equivalences, the top map is truncated if and only if the bottom map is truncated ```agda module _ {l1 l2 l3 l4 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (i : C → D) (H : coherence-square-maps f g h i) where is-trunc-map-top-is-trunc-map-bottom-is-equiv : is-equiv g → is-equiv h → is-trunc-map k i → is-trunc-map k f is-trunc-map-top-is-trunc-map-bottom-is-equiv K L M = is-trunc-map-top-map-triangle k (i ∘ g) h f H ( is-trunc-map-is-equiv k L) ( is-trunc-map-comp k i g M ( is-trunc-map-is-equiv k K)) ```