# Binary embeddings ```agda module foundation.binary-embeddings where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-binary-functions open import foundation.action-on-identifications-functions open import foundation.binary-equivalences open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.universe-levels open import foundation-core.embeddings open import foundation-core.equivalences ``` </details> ## Idea A binary operation `f : A → B → C` is said to be a binary embedding if the functions `λ x → f x b` and `λ y → f a y` are embeddings for each `a : A` and `b : B` respectively. ## Definition ```agda is-binary-emb : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} → (A → B → C) → UU (l1 ⊔ l2 ⊔ l3) is-binary-emb {A = A} {B = B} f = {x x' : A} {y y' : B} → is-binary-equiv (λ (p : x = x') (q : y = y') → ap-binary f p q) ``` ## Properties ### Any binary equivalence is a binary embedding ```agda is-emb-fix-left-is-binary-equiv : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} (f : A → B → C) → is-binary-equiv f → {a : A} → is-emb (fix-left f a) is-emb-fix-left-is-binary-equiv f H {a} = is-emb-is-equiv (is-equiv-fix-left f H) is-emb-fix-right-is-binary-equiv : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} (f : A → B → C) → is-binary-equiv f → {b : B} → is-emb (fix-right f b) is-emb-fix-right-is-binary-equiv f H {b} = is-emb-is-equiv (is-equiv-fix-right f H) is-binary-emb-is-binary-equiv : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {f : A → B → C} → is-binary-equiv f → is-binary-emb f is-binary-emb-is-binary-equiv {f = f} H {x} {x'} {y} {y'} = pair ( λ q → is-equiv-left-map-triangle ( λ p → ap-binary f p q) ( concat' (f x y) (ap (fix-left f x') q)) ( λ p → ap (fix-right f y) p) ( λ p → triangle-ap-binary f p q) ( is-emb-fix-right-is-binary-equiv f H x x') ( is-equiv-concat' (f x y) (ap (fix-left f x') q))) ( λ p → is-equiv-left-map-triangle ( λ q → ap-binary f p q) ( concat (ap (fix-right f y) p) (f x' y')) ( λ q → ap (fix-left f x') q) ( λ q → triangle-ap-binary f p q) ( is-emb-fix-left-is-binary-equiv f H y y') ( is-equiv-concat (ap (fix-right f y) p) (f x' y'))) ```