# Equivalence extensionality ```agda module foundation.equivalence-extensionality where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.dependent-universal-property-equivalences open import foundation.function-extensionality open import foundation.fundamental-theorem-of-identity-types open import foundation.identity-systems open import foundation.subtype-identity-principle open import foundation.universe-levels open import foundation-core.contractible-maps open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.fibers-of-maps open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.propositions open import foundation-core.sections open import foundation-core.torsorial-type-families open import foundation-core.type-theoretic-principle-of-choice ``` </details> ## Characterizing the identity type of equivalences ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where htpy-equiv : A ≃ B → A ≃ B → UU (l1 ⊔ l2) htpy-equiv e e' = (map-equiv e) ~ (map-equiv e') _~e_ = htpy-equiv extensionality-equiv : (f g : A ≃ B) → (f = g) ≃ htpy-equiv f g extensionality-equiv f = extensionality-type-subtype ( is-equiv-Prop) ( pr2 f) ( refl-htpy' (pr1 f)) ( λ g → equiv-funext) where is-equiv-Prop : (f : A → B) → Prop (l1 ⊔ l2) pr1 (is-equiv-Prop f) = is-equiv f pr2 (is-equiv-Prop f) H = is-prop-is-contr ( is-contr-prod ( is-contr-equiv' ( (b : B) → fiber f b) ( distributive-Π-Σ) ( is-contr-Π (is-contr-map-is-equiv H))) ( is-contr-is-equiv' ( Σ (B → A) (λ h → (h ∘ f) = id)) ( tot (λ h → htpy-eq)) ( is-equiv-tot-is-fiberwise-equiv ( λ h → funext (h ∘ f) id)) ( is-contr-map-is-equiv ( is-equiv-precomp-Π-is-equiv H (λ y → A)) ( id)))) ( H) abstract is-torsorial-htpy-equiv : (e : A ≃ B) → is-torsorial (htpy-equiv e) is-torsorial-htpy-equiv e = fundamental-theorem-id' ( map-equiv ∘ extensionality-equiv e) ( is-equiv-map-equiv ∘ extensionality-equiv e) refl-htpy-equiv : (e : A ≃ B) → htpy-equiv e e refl-htpy-equiv e = refl-htpy eq-htpy-equiv : {e e' : A ≃ B} → htpy-equiv e e' → e = e' eq-htpy-equiv {e} {e'} = map-inv-equiv (extensionality-equiv e e') htpy-eq-equiv : {e e' : A ≃ B} → e = e' → htpy-equiv e e' htpy-eq-equiv {e} {e'} = map-equiv (extensionality-equiv e e') htpy-eq-map-equiv : {e e' : A ≃ B} → (map-equiv e) = (map-equiv e') → htpy-equiv e e' htpy-eq-map-equiv = htpy-eq ``` ### Homotopy induction for homotopies between equivalences ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where abstract induction-principle-htpy-equiv : {l3 : Level} (e : A ≃ B) (P : (e' : A ≃ B) (H : htpy-equiv e e') → UU l3) → section ( λ (h : (e' : A ≃ B) (H : htpy-equiv e e') → P e' H) → h e (refl-htpy-equiv e)) induction-principle-htpy-equiv e = is-identity-system-is-torsorial e ( refl-htpy-equiv e) ( is-torsorial-htpy-equiv e) ind-htpy-equiv : {l3 : Level} (e : A ≃ B) (P : (e' : A ≃ B) (H : htpy-equiv e e') → UU l3) → P e (refl-htpy-equiv e) → (e' : A ≃ B) (H : htpy-equiv e e') → P e' H ind-htpy-equiv e P = pr1 (induction-principle-htpy-equiv e P) compute-ind-htpy-equiv : {l3 : Level} (e : A ≃ B) (P : (e' : A ≃ B) (H : htpy-equiv e e') → UU l3) (p : P e (refl-htpy-equiv e)) → ind-htpy-equiv e P p e (refl-htpy-equiv e) = p compute-ind-htpy-equiv e P = pr2 (induction-principle-htpy-equiv e P) ```