# Iterated dependent product types ```agda module foundation.iterated-dependent-product-types where open import foundation.telescopes public ``` <details><summary>Imports</summary> ```agda open import elementary-number-theory.natural-numbers open import foundation.implicit-function-types open import foundation.universe-levels open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.functoriality-dependent-function-types open import foundation-core.propositions open import foundation-core.truncated-types open import foundation-core.truncation-levels ``` </details> ## Idea **Iterated dependent products** are defined by iteratively applying the built in dependent function type operator. More formally, `iterated-Π` is defined as an operation `telescope l n → UU l` from the type of [telescopes](foundation.telescopes.md) to the universe of types of universe level `l`. For example, the iterated dependent product of the telescope ```text A₀ : 𝒰 l₀ A₁ : A₀ → 𝒰 l₁ A₂ : (x₀ : A₀) → A₁ x₀ → 𝒰 l₂ A₃ : (x₀ : A₀) (x₁ : A₁ x₀) → A₂ x₀ x₁ → 𝒰 l₃ ``` is the dependent product type ```text (x₀ : A₀) (x₁ : A₁ x₀) (x₂ : A₂ x₀ x₁) → A₃ x₀ x₁ x₂ ``` of universe level `l₀ ⊔ l₁ ⊔ l₂ ⊔ l₃`. ## Definitions ### Iterated dependent products of iterated type families ```agda iterated-Π : {l : Level} {n : ℕ} → telescope l n → UU l iterated-Π (base-telescope A) = A iterated-Π (cons-telescope {X = X} A) = (x : X) → iterated-Π (A x) iterated-implicit-Π : {l : Level} {n : ℕ} → telescope l n → UU l iterated-implicit-Π (base-telescope A) = A iterated-implicit-Π (cons-telescope {X = X} A) = {x : X} → iterated-implicit-Π (A x) ``` ### Iterated sections of type families ```agda data iterated-section : {l : Level} {n : ℕ} → telescope l n → UUω where base-iterated-section : {l1 : Level} {A : UU l1} → A → iterated-section (base-telescope A) cons-iterated-section : {l1 l2 : Level} {n : ℕ} {X : UU l1} {Y : X → telescope l2 n} → ((x : X) → iterated-section (Y x)) → iterated-section (cons-telescope Y) ``` ### Iterated λ-abstractions ```agda iterated-λ : {l : Level} {n : ℕ} {A : telescope l n} → iterated-section A → iterated-Π A iterated-λ (base-iterated-section a) = a iterated-λ (cons-iterated-section f) x = iterated-λ (f x) ``` ### Transforming iterated products Given an operation on universes, we can apply it at the codomain of the iterated product. ```agda apply-codomain-iterated-Π : {l1 : Level} {n : ℕ} (P : {l : Level} → UU l → UU l) → telescope l1 n → UU l1 apply-codomain-iterated-Π P A = iterated-Π (apply-base-telescope P A) apply-codomain-iterated-implicit-Π : {l1 : Level} {n : ℕ} (P : {l : Level} → UU l → UU l) → telescope l1 n → UU l1 apply-codomain-iterated-implicit-Π P A = iterated-implicit-Π (apply-base-telescope P A) ``` ## Properties ### If a dependent product satisfies a property if its codomain does, then iterated dependent products satisfy that property if the codomain does ```agda section-iterated-Π-section-Π-section-codomain : (P : {l : Level} → UU l → UU l) → ( {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → ((x : A) → P (B x)) → P ((x : A) → B x)) → {l : Level} (n : ℕ) {{A : telescope l n}} → apply-codomain-iterated-Π P A → P (iterated-Π A) section-iterated-Π-section-Π-section-codomain P f ._ {{base-telescope A}} H = H section-iterated-Π-section-Π-section-codomain P f ._ {{cons-telescope A}} H = f (λ x → section-iterated-Π-section-Π-section-codomain P f _ {{A x}} (H x)) section-iterated-implicit-Π-section-Π-section-codomain : (P : {l : Level} → UU l → UU l) → ( {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → ((x : A) → P (B x)) → P ({x : A} → B x)) → {l : Level} (n : ℕ) {{A : telescope l n}} → apply-codomain-iterated-Π P A → P (iterated-implicit-Π A) section-iterated-implicit-Π-section-Π-section-codomain P f ._ {{base-telescope A}} H = H section-iterated-implicit-Π-section-Π-section-codomain P f ._ {{cons-telescope A}} H = f ( λ x → section-iterated-implicit-Π-section-Π-section-codomain P f _ {{A x}} (H x)) ``` ### Multivariable function types are equivalent to multivariable implicit function types ```agda equiv-explicit-implicit-iterated-Π : {l : Level} (n : ℕ) {{A : telescope l n}} → iterated-implicit-Π A ≃ iterated-Π A equiv-explicit-implicit-iterated-Π .0 ⦃ base-telescope A ⦄ = id-equiv equiv-explicit-implicit-iterated-Π ._ ⦃ cons-telescope A ⦄ = equiv-Π-equiv-family (λ x → equiv-explicit-implicit-iterated-Π _ {{A x}}) ∘e equiv-explicit-implicit-Π equiv-implicit-explicit-iterated-Π : {l : Level} (n : ℕ) {{A : telescope l n}} → iterated-Π A ≃ iterated-implicit-Π A equiv-implicit-explicit-iterated-Π n {{A}} = inv-equiv (equiv-explicit-implicit-iterated-Π n {{A}}) ``` ### Iterated products of contractible types is contractible ```agda is-contr-iterated-Π : {l : Level} (n : ℕ) {{A : telescope l n}} → apply-codomain-iterated-Π is-contr A → is-contr (iterated-Π A) is-contr-iterated-Π = section-iterated-Π-section-Π-section-codomain is-contr is-contr-Π is-contr-iterated-implicit-Π : {l : Level} (n : ℕ) {{A : telescope l n}} → apply-codomain-iterated-Π is-contr A → is-contr (iterated-implicit-Π A) is-contr-iterated-implicit-Π = section-iterated-implicit-Π-section-Π-section-codomain ( is-contr) ( is-contr-implicit-Π) ``` ### Iterated products of propositions are propositions ```agda is-prop-iterated-Π : {l : Level} (n : ℕ) {{A : telescope l n}} → apply-codomain-iterated-Π is-prop A → is-prop (iterated-Π A) is-prop-iterated-Π = section-iterated-Π-section-Π-section-codomain is-prop is-prop-Π is-prop-iterated-implicit-Π : {l : Level} (n : ℕ) {{A : telescope l n}} → apply-codomain-iterated-Π is-prop A → is-prop (iterated-implicit-Π A) is-prop-iterated-implicit-Π = section-iterated-implicit-Π-section-Π-section-codomain is-prop is-prop-Π' ``` ### Iterated products of truncated types are truncated ```agda is-trunc-iterated-Π : {l : Level} (k : 𝕋) (n : ℕ) {{A : telescope l n}} → apply-codomain-iterated-Π (is-trunc k) A → is-trunc k (iterated-Π A) is-trunc-iterated-Π k = section-iterated-Π-section-Π-section-codomain (is-trunc k) (is-trunc-Π k) ``` ## See also - [Iterated Σ-types](foundation.iterated-dependent-pair-types.md) - [Multivariable homotopies](foundation.multivariable-homotopies.md)