# The preunivalence axiom ```agda module foundation.preunivalence where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.equivalences open import foundation.sets open import foundation.univalence open import foundation.universe-levels open import foundation-core.identity-types open import foundation-core.subtypes ``` </details> ## Idea **The preunivalence axiom**, or **axiom L**, which is due to Peter Lumsdaine, asserts that for any two types `X` and `Y` in a common universe, the map `X = Y → X ≃ Y` is an [embedding](foundation-core.embeddings.md). This axiom is a common generalization of the [univalence axiom](foundation.univalence.md) and [axiom K](foundation-core.sets.md). ## Definition ```agda instance-preunivalence : {l : Level} (X Y : UU l) → UU (lsuc l) instance-preunivalence X Y = is-emb (equiv-eq {A = X} {B = Y}) based-preunivalence-axiom : {l : Level} (X : UU l) → UU (lsuc l) based-preunivalence-axiom {l} X = (Y : UU l) → instance-preunivalence X Y preunivalence-axiom-Level : (l : Level) → UU (lsuc l) preunivalence-axiom-Level l = (X Y : UU l) → instance-preunivalence X Y preunivalence-axiom : UUω preunivalence-axiom = {l : Level} → preunivalence-axiom-Level l emb-preunivalence : preunivalence-axiom → {l : Level} (X Y : UU l) → (X = Y) ↪ (X ≃ Y) pr1 (emb-preunivalence L X Y) = equiv-eq pr2 (emb-preunivalence L X Y) = L X Y emb-map-preunivalence : preunivalence-axiom → {l : Level} (X Y : UU l) → (X = Y) ↪ (X → Y) emb-map-preunivalence L X Y = comp-emb (emb-subtype is-equiv-Prop) (emb-preunivalence L X Y) ``` ## Properties ### Preunivalence generalizes axiom K To show that preunivalence generalizes axiom K, we assume axiom K for the types in question and for the universe itself. ```agda module _ {l : Level} (A B : UU l) where instance-preunivalence-instance-axiom-K : instance-axiom-K (UU l) → instance-axiom-K A → instance-axiom-K B → instance-preunivalence A B instance-preunivalence-instance-axiom-K K-Type K-A K-B = is-emb-is-prop-is-set ( is-set-axiom-K K-Type A B) ( is-set-equiv-is-set (is-set-axiom-K K-A) (is-set-axiom-K K-B)) preunivalence-axiom-axiom-K : axiom-K → preunivalence-axiom preunivalence-axiom-axiom-K K {l} X Y = instance-preunivalence-instance-axiom-K X Y (K (UU l)) (K X) (K Y) ``` ### Preunivalence generalizes univalence ```agda module _ {l : Level} (A B : UU l) where instance-preunivalence-instance-univalence : instance-univalence A B → instance-preunivalence A B instance-preunivalence-instance-univalence = is-emb-is-equiv preunivalence-axiom-univalence-axiom : univalence-axiom → preunivalence-axiom preunivalence-axiom-univalence-axiom UA X Y = instance-preunivalence-instance-univalence X Y (UA X Y) ``` ### Preunivalence holds in univalent foundations ```agda preunivalence : preunivalence-axiom preunivalence = preunivalence-axiom-univalence-axiom univalence ``` ## See also - Preunivalence is sufficient to prove that `Id : A → (A → 𝒰)` is an embedding. This fact is proven in [`foundation.universal-property-identity-types`](foundation.universal-property-identity-types.md) - [Preunivalent categories](category-theory.preunivalent-categories.md)