# The univalence axiom ```agda module foundation.univalence where open import foundation-core.univalence public ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.equality-dependent-function-types open import foundation.equivalences open import foundation.fundamental-theorem-of-identity-types open import foundation.universe-levels open import foundation-core.contractible-types open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.injective-maps open import foundation-core.torsorial-type-families ``` </details> ## Idea The univalence axiom characterizes the [identity types](foundation-core.identity-types.md) of universes. It asserts that the map `(A = B) → (A ≃ B)` is an [equivalence](foundation-core.equivalences.md). In this file we postulate the univalence axiom. Its statement is defined in [`foundation-core.univalence`](foundation-core.univalence.md). ## Postulate ```agda postulate univalence : univalence-axiom ``` ## Properties ```agda module _ {l : Level} where equiv-univalence : {A B : UU l} → (A = B) ≃ (A ≃ B) pr1 equiv-univalence = equiv-eq pr2 (equiv-univalence {A} {B}) = univalence A B eq-equiv : (A B : UU l) → A ≃ B → A = B eq-equiv A B = map-inv-is-equiv (univalence A B) abstract is-section-eq-equiv : {A B : UU l} → (equiv-eq ∘ eq-equiv A B) ~ id is-section-eq-equiv {A} {B} = is-section-map-inv-is-equiv (univalence A B) is-retraction-eq-equiv : {A B : UU l} → (eq-equiv A B ∘ equiv-eq) ~ id is-retraction-eq-equiv {A} {B} = is-retraction-map-inv-is-equiv (univalence A B) is-equiv-eq-equiv : (A B : UU l) → is-equiv (eq-equiv A B) is-equiv-eq-equiv A B = is-equiv-map-inv-is-equiv (univalence A B) compute-eq-equiv-id-equiv : (A : UU l) → eq-equiv A A id-equiv = refl compute-eq-equiv-id-equiv A = is-retraction-eq-equiv refl equiv-eq-equiv : (A B : UU l) → (A ≃ B) ≃ (A = B) pr1 (equiv-eq-equiv A B) = eq-equiv A B pr2 (equiv-eq-equiv A B) = is-equiv-eq-equiv A B ``` ### The total space of all equivalences out of a type or into a type is contractible Type families of which the [total space](foundation.dependent-pair-types.md) is [contractible](foundation-core.contractible-types.md) are also called [torsorial](foundation-core.torsorial-type-families.md). This terminology originates from higher group theory, where a [higher group action](higher-group-theory.higher-group-actions.md) is torsorial if its type of [orbits](higher-group-theory.orbits-higher-group-actions.md), i.e., its total space, is contractible. Our claim that the total space of all equivalences out of a type `A` is contractible can therefore be stated more succinctly as the claim that the family of equivalences out of `A` is torsorial. ```agda abstract is-torsorial-equiv : (A : UU l) → is-torsorial (λ (X : UU l) → A ≃ X) is-torsorial-equiv A = is-torsorial-equiv-based-univalence A (univalence A) is-torsorial-equiv' : (A : UU l) → is-torsorial (λ (X : UU l) → X ≃ A) is-torsorial-equiv' A = is-contr-equiv' ( Σ (UU l) (λ X → X = A)) ( equiv-tot (λ X → equiv-univalence)) ( is-torsorial-path' A) ``` ### Univalence for type families ```agda equiv-fam : {l1 l2 l3 : Level} {A : UU l1} (B : A → UU l2) (C : A → UU l3) → UU (l1 ⊔ l2 ⊔ l3) equiv-fam {A = A} B C = (a : A) → B a ≃ C a id-equiv-fam : {l1 l2 : Level} {A : UU l1} (B : A → UU l2) → equiv-fam B B id-equiv-fam B a = id-equiv equiv-eq-fam : {l1 l2 : Level} {A : UU l1} (B C : A → UU l2) → B = C → equiv-fam B C equiv-eq-fam B .B refl = id-equiv-fam B abstract is-torsorial-equiv-fam : {l1 l2 : Level} {A : UU l1} (B : A → UU l2) → is-torsorial (λ (C : A → UU l2) → equiv-fam B C) is-torsorial-equiv-fam B = is-torsorial-Eq-Π ( λ x X → (B x) ≃ X) ( λ x → is-torsorial-equiv (B x)) abstract is-equiv-equiv-eq-fam : {l1 l2 : Level} {A : UU l1} (B C : A → UU l2) → is-equiv (equiv-eq-fam B C) is-equiv-equiv-eq-fam B = fundamental-theorem-id ( is-torsorial-equiv-fam B) ( equiv-eq-fam B) extensionality-fam : {l1 l2 : Level} {A : UU l1} (B C : A → UU l2) → (B = C) ≃ equiv-fam B C pr1 (extensionality-fam B C) = equiv-eq-fam B C pr2 (extensionality-fam B C) = is-equiv-equiv-eq-fam B C eq-equiv-fam : {l1 l2 : Level} {A : UU l1} {B C : A → UU l2} → equiv-fam B C → B = C eq-equiv-fam {B = B} {C} = map-inv-is-equiv (is-equiv-equiv-eq-fam B C) ``` ### Computations with univalence ```agda compute-equiv-eq-concat : {l : Level} {A B C : UU l} (p : A = B) (q : B = C) → ((equiv-eq q) ∘e (equiv-eq p)) = equiv-eq (p ∙ q) compute-equiv-eq-concat refl refl = eq-equiv-eq-map-equiv refl compute-eq-equiv-comp-equiv : {l : Level} (A B C : UU l) (f : A ≃ B) (g : B ≃ C) → ((eq-equiv A B f) ∙ (eq-equiv B C g)) = eq-equiv A C (g ∘e f) compute-eq-equiv-comp-equiv A B C f g = is-injective-map-equiv ( equiv-univalence) ( ( inv ( compute-equiv-eq-concat (eq-equiv A B f) (eq-equiv B C g))) ∙ ( ( ap ( λ e → (map-equiv e g) ∘e (equiv-eq (eq-equiv A B f))) ( right-inverse-law-equiv equiv-univalence)) ∙ ( ( ap ( λ e → g ∘e map-equiv e f) ( right-inverse-law-equiv equiv-univalence)) ∙ ( ap ( λ e → map-equiv e (g ∘e f)) ( inv (right-inverse-law-equiv equiv-univalence)))))) compute-equiv-eq-ap-inv : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {x y : A} (p : x = y) → map-equiv (equiv-eq (ap B (inv p)) ∘e (equiv-eq (ap B p))) ~ id compute-equiv-eq-ap-inv refl = refl-htpy commutativity-inv-equiv-eq : {l : Level} (A B : UU l) (p : A = B) → inv-equiv (equiv-eq p) = equiv-eq (inv p) commutativity-inv-equiv-eq A .A refl = eq-equiv-eq-map-equiv refl commutativity-inv-eq-equiv : {l : Level} (A B : UU l) (f : A ≃ B) → inv (eq-equiv A B f) = eq-equiv B A (inv-equiv f) commutativity-inv-eq-equiv A B f = is-injective-map-equiv ( equiv-univalence) ( ( inv (commutativity-inv-equiv-eq A B (eq-equiv A B f))) ∙ ( ( ap ( λ e → (inv-equiv (map-equiv e f))) ( right-inverse-law-equiv equiv-univalence)) ∙ ( ap ( λ e → map-equiv e (inv-equiv f)) ( inv (right-inverse-law-equiv equiv-univalence))))) ```