# Uniqueness of the image of a map ```agda module foundation.uniqueness-image where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.images open import foundation.slice open import foundation.type-arithmetic-dependent-pair-types open import foundation.universal-property-image open import foundation.universe-levels open import foundation-core.commuting-triangles-of-maps open import foundation-core.contractible-types open import foundation-core.embeddings open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.propositions open import foundation-core.whiskering-homotopies ``` </details> ### Uniqueness of the image ```agda module _ {l1 l2 l3 l4 : Level} {X : UU l1} {A : UU l2} (f : A → X) {B : UU l3} (i : B ↪ X) (q : hom-slice f (map-emb i)) {B' : UU l4} (i' : B' ↪ X) (q' : hom-slice f (map-emb i')) (h : hom-slice (map-emb i) (map-emb i')) where abstract is-equiv-is-image-is-image : is-image f i q → is-image f i' q' → is-equiv (map-hom-slice (map-emb i) (map-emb i') h) is-equiv-is-image-is-image up-i up-i' = is-equiv-hom-slice-emb i i' h (map-inv-is-equiv (up-i' B i) q) abstract is-image-is-image-is-equiv : is-equiv (map-hom-slice (map-emb i) (map-emb i') h) → is-image f i q → is-image f i' q' is-image-is-image-is-equiv is-equiv-h up-i {l} = is-image-is-image' f i' q' ( λ C j r → comp-hom-slice ( map-emb i') ( map-emb i) ( map-emb j) ( map-inv-is-equiv (up-i C j) r) ( pair ( map-inv-is-equiv is-equiv-h) ( triangle-section ( map-emb i) ( map-emb i') ( map-hom-slice (map-emb i) (map-emb i') h) ( triangle-hom-slice (map-emb i) (map-emb i') h) ( pair ( map-inv-is-equiv is-equiv-h) ( is-section-map-inv-is-equiv is-equiv-h))))) abstract is-image-is-equiv-is-image : is-image f i' q' → is-equiv (map-hom-slice (map-emb i) (map-emb i') h) → is-image f i q is-image-is-equiv-is-image up-i' is-equiv-h {l} = is-image-is-image' f i q ( λ C j r → comp-hom-slice ( map-emb i) ( map-emb i') ( map-emb j) ( map-inv-is-equiv (up-i' C j) r) ( h)) module _ {l1 l2 l3 l4 : Level} {X : UU l1} {A : UU l2} (f : A → X) {B : UU l3} (i : B ↪ X) (q : hom-slice f (map-emb i)) (Hi : is-image f i q) {B' : UU l4} (i' : B' ↪ X) (q' : hom-slice f (map-emb i')) (Hi' : is-image f i' q') where abstract uniqueness-image : is-contr ( Σ ( equiv-slice (map-emb i) (map-emb i')) ( λ e → htpy-hom-slice f ( map-emb i') ( comp-hom-slice f ( map-emb i) ( map-emb i') ( hom-equiv-slice (map-emb i) (map-emb i') e) ( q)) ( q'))) uniqueness-image = is-contr-equiv ( Σ ( Σ ( hom-slice (map-emb i) (map-emb i')) ( λ h → htpy-hom-slice f ( map-emb i') ( comp-hom-slice f (map-emb i) (map-emb i') h q) ( q'))) ( λ h → is-equiv (pr1 (pr1 h)))) ( ( equiv-right-swap-Σ) ∘e ( equiv-Σ ( λ h → htpy-hom-slice f ( map-emb i') ( comp-hom-slice f (map-emb i) (map-emb i') (pr1 h) q) ( q')) ( equiv-right-swap-Σ) ( λ ((e , E) , H) → id-equiv))) ( is-contr-equiv ( is-equiv ( map-hom-slice-universal-property-image f i q Hi i' q')) ( left-unit-law-Σ-is-contr ( universal-property-image f i q Hi i' q') ( center (universal-property-image f i q Hi i' q'))) ( is-proof-irrelevant-is-prop ( is-property-is-equiv ( map-hom-slice-universal-property-image f i q Hi i' q')) ( is-equiv-is-image-is-image f i q i' q' ( hom-slice-universal-property-image f i q Hi i' q') ( Hi) ( Hi')))) equiv-slice-uniqueness-image : equiv-slice (map-emb i) (map-emb i') equiv-slice-uniqueness-image = pr1 (center uniqueness-image) hom-equiv-slice-uniqueness-image : hom-slice (map-emb i) (map-emb i') hom-equiv-slice-uniqueness-image = hom-equiv-slice (map-emb i) (map-emb i') (equiv-slice-uniqueness-image) map-hom-equiv-slice-uniqueness-image : B → B' map-hom-equiv-slice-uniqueness-image = map-hom-slice (map-emb i) (map-emb i') (hom-equiv-slice-uniqueness-image) abstract is-equiv-map-hom-equiv-slice-uniqueness-image : is-equiv map-hom-equiv-slice-uniqueness-image is-equiv-map-hom-equiv-slice-uniqueness-image = is-equiv-map-equiv (pr1 equiv-slice-uniqueness-image) equiv-equiv-slice-uniqueness-image : B ≃ B' pr1 equiv-equiv-slice-uniqueness-image = map-hom-equiv-slice-uniqueness-image pr2 equiv-equiv-slice-uniqueness-image = is-equiv-map-hom-equiv-slice-uniqueness-image triangle-hom-equiv-slice-uniqueness-image : (map-emb i) ~ (map-emb i' ∘ map-hom-equiv-slice-uniqueness-image) triangle-hom-equiv-slice-uniqueness-image = triangle-hom-slice ( map-emb i) ( map-emb i') ( hom-equiv-slice-uniqueness-image) htpy-equiv-slice-uniqueness-image : htpy-hom-slice f ( map-emb i') ( comp-hom-slice f ( map-emb i) ( map-emb i') ( hom-equiv-slice-uniqueness-image) ( q)) ( q') htpy-equiv-slice-uniqueness-image = pr2 (center uniqueness-image) htpy-map-hom-equiv-slice-uniqueness-image : ( map-hom-equiv-slice-uniqueness-image ∘ map-hom-slice f (map-emb i) q) ~ ( map-hom-slice f (map-emb i') q') htpy-map-hom-equiv-slice-uniqueness-image = pr1 htpy-equiv-slice-uniqueness-image tetrahedron-hom-equiv-slice-uniqueness-image : ( ( ( triangle-hom-slice f (map-emb i) q) ∙h ( ( triangle-hom-equiv-slice-uniqueness-image) ·r ( map-hom-slice f (map-emb i) q))) ∙h ( map-emb i' ·l htpy-map-hom-equiv-slice-uniqueness-image)) ~ ( triangle-hom-slice f (map-emb i') q') tetrahedron-hom-equiv-slice-uniqueness-image = pr2 htpy-equiv-slice-uniqueness-image ``` ### Uniqueness of the image ```agda module _ {l1 l2 l3 : Level} {X : UU l1} {A : UU l2} (f : A → X) {B : UU l3} (i : B ↪ X) (q : hom-slice f (map-emb i)) (H : is-image f i q) where abstract uniqueness-im : is-contr ( Σ ( equiv-slice (inclusion-im f) (map-emb i)) ( λ e → htpy-hom-slice f ( map-emb i) ( comp-hom-slice f ( inclusion-im f) ( map-emb i) ( hom-equiv-slice (inclusion-im f) (map-emb i) e) ( unit-im f)) ( q))) uniqueness-im = uniqueness-image f (emb-im f) (unit-im f) (is-image-im f) i q H equiv-slice-uniqueness-im : equiv-slice (inclusion-im f) (map-emb i) equiv-slice-uniqueness-im = pr1 (center uniqueness-im) hom-equiv-slice-uniqueness-im : hom-slice (inclusion-im f) (map-emb i) hom-equiv-slice-uniqueness-im = hom-equiv-slice (inclusion-im f) (map-emb i) equiv-slice-uniqueness-im map-hom-equiv-slice-uniqueness-im : im f → B map-hom-equiv-slice-uniqueness-im = map-hom-slice (inclusion-im f) (map-emb i) hom-equiv-slice-uniqueness-im abstract is-equiv-map-hom-equiv-slice-uniqueness-im : is-equiv map-hom-equiv-slice-uniqueness-im is-equiv-map-hom-equiv-slice-uniqueness-im = is-equiv-map-equiv (pr1 equiv-slice-uniqueness-im) equiv-equiv-slice-uniqueness-im : im f ≃ B pr1 equiv-equiv-slice-uniqueness-im = map-hom-equiv-slice-uniqueness-im pr2 equiv-equiv-slice-uniqueness-im = is-equiv-map-hom-equiv-slice-uniqueness-im triangle-hom-equiv-slice-uniqueness-im : (inclusion-im f) ~ (map-emb i ∘ map-hom-equiv-slice-uniqueness-im) triangle-hom-equiv-slice-uniqueness-im = triangle-hom-slice ( inclusion-im f) ( map-emb i) ( hom-equiv-slice-uniqueness-im) htpy-equiv-slice-uniqueness-im : htpy-hom-slice f ( map-emb i) ( comp-hom-slice f ( inclusion-im f) ( map-emb i) ( hom-equiv-slice-uniqueness-im) ( unit-im f)) ( q) htpy-equiv-slice-uniqueness-im = pr2 (center uniqueness-im) htpy-map-hom-equiv-slice-uniqueness-im : ( ( map-hom-equiv-slice-uniqueness-im) ∘ ( map-hom-slice f (inclusion-im f) (unit-im f))) ~ ( map-hom-slice f (map-emb i) q) htpy-map-hom-equiv-slice-uniqueness-im = pr1 htpy-equiv-slice-uniqueness-im tetrahedron-hom-equiv-slice-uniqueness-im : ( ( ( triangle-hom-slice f (inclusion-im f) (unit-im f)) ∙h ( ( triangle-hom-equiv-slice-uniqueness-im) ·r ( map-hom-slice f (inclusion-im f) (unit-im f)))) ∙h ( map-emb i ·l htpy-map-hom-equiv-slice-uniqueness-im)) ~ ( triangle-hom-slice f (map-emb i) q) tetrahedron-hom-equiv-slice-uniqueness-im = pr2 htpy-equiv-slice-uniqueness-im ```