# Inequality of natural numbers ```agda module elementary-number-theory.inequality-natural-numbers where ``` <details><summary>Imports</summary> ```agda open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.action-on-identifications-functions open import foundation.binary-relations open import foundation.cartesian-product-types open import foundation.coproduct-types open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.function-types open import foundation.functoriality-coproduct-types open import foundation.identity-types open import foundation.negation open import foundation.propositions open import foundation.unit-type open import foundation.universe-levels open import order-theory.posets open import order-theory.preorders ``` </details> ## Idea The relation `≤` on the natural numbers is the unique relation such that `0` is less than any natural number, and such that `m+1 ≤ n+1` is equivalent to `m ≤ n`. ## Definitions ### The partial ordering on ℕ ```agda leq-ℕ : ℕ → ℕ → UU lzero leq-ℕ zero-ℕ m = unit leq-ℕ (succ-ℕ n) zero-ℕ = empty leq-ℕ (succ-ℕ n) (succ-ℕ m) = leq-ℕ n m infix 30 _≤-ℕ_ _≤-ℕ_ = leq-ℕ ``` ### Alternative definition of the partial ordering on ℕ ```agda data leq-ℕ' : ℕ → ℕ → UU lzero where refl-leq-ℕ' : (n : ℕ) → leq-ℕ' n n propagate-leq-ℕ' : {x y z : ℕ} → succ-ℕ y = z → (leq-ℕ' x y) → (leq-ℕ' x z) ``` ## Properties ### Inequality on ℕ is a proposition ```agda is-prop-leq-ℕ : (m n : ℕ) → is-prop (leq-ℕ m n) is-prop-leq-ℕ zero-ℕ zero-ℕ = is-prop-unit is-prop-leq-ℕ zero-ℕ (succ-ℕ n) = is-prop-unit is-prop-leq-ℕ (succ-ℕ m) zero-ℕ = is-prop-empty is-prop-leq-ℕ (succ-ℕ m) (succ-ℕ n) = is-prop-leq-ℕ m n leq-ℕ-Prop : ℕ → ℕ → Prop lzero pr1 (leq-ℕ-Prop m n) = leq-ℕ m n pr2 (leq-ℕ-Prop m n) = is-prop-leq-ℕ m n ``` ### The partial ordering on the natural numbers is decidable ```agda is-decidable-leq-ℕ : (m n : ℕ) → is-decidable (leq-ℕ m n) is-decidable-leq-ℕ zero-ℕ zero-ℕ = inl star is-decidable-leq-ℕ zero-ℕ (succ-ℕ n) = inl star is-decidable-leq-ℕ (succ-ℕ m) zero-ℕ = inr id is-decidable-leq-ℕ (succ-ℕ m) (succ-ℕ n) = is-decidable-leq-ℕ m n ``` ### The partial ordering on ℕ is a congruence ```agda concatenate-eq-leq-eq-ℕ : {x' x y y' : ℕ} → x' = x → x ≤-ℕ y → y = y' → x' ≤-ℕ y' concatenate-eq-leq-eq-ℕ refl H refl = H concatenate-leq-eq-ℕ : (m : ℕ) {n n' : ℕ} → m ≤-ℕ n → n = n' → m ≤-ℕ n' concatenate-leq-eq-ℕ m H refl = H concatenate-eq-leq-ℕ : {m m' : ℕ} (n : ℕ) → m' = m → m ≤-ℕ n → m' ≤-ℕ n concatenate-eq-leq-ℕ n refl H = H ``` ### Reflexivity ```agda refl-leq-ℕ : (n : ℕ) → n ≤-ℕ n refl-leq-ℕ zero-ℕ = star refl-leq-ℕ (succ-ℕ n) = refl-leq-ℕ n leq-eq-ℕ : (m n : ℕ) → m = n → m ≤-ℕ n leq-eq-ℕ m .m refl = refl-leq-ℕ m ``` ### Transitivity ```agda transitive-leq-ℕ : is-transitive leq-ℕ transitive-leq-ℕ zero-ℕ m l p q = star transitive-leq-ℕ (succ-ℕ n) (succ-ℕ m) (succ-ℕ l) p q = transitive-leq-ℕ n m l p q ``` ### Antisymmetry ```agda antisymmetric-leq-ℕ : (m n : ℕ) → m ≤-ℕ n → n ≤-ℕ m → m = n antisymmetric-leq-ℕ zero-ℕ zero-ℕ p q = refl antisymmetric-leq-ℕ (succ-ℕ m) (succ-ℕ n) p q = ap succ-ℕ (antisymmetric-leq-ℕ m n p q) ``` ### The poset of natural numbers ```agda ℕ-Preorder : Preorder lzero lzero pr1 ℕ-Preorder = ℕ pr1 (pr2 ℕ-Preorder) = leq-ℕ-Prop pr1 (pr2 (pr2 ℕ-Preorder)) = refl-leq-ℕ pr2 (pr2 (pr2 ℕ-Preorder)) = transitive-leq-ℕ ℕ-Poset : Poset lzero lzero pr1 ℕ-Poset = ℕ-Preorder pr2 ℕ-Poset = antisymmetric-leq-ℕ ``` ### For any two natural numbers we can decide which one is less than the other ```agda linear-leq-ℕ : (m n : ℕ) → (m ≤-ℕ n) + (n ≤-ℕ m) linear-leq-ℕ zero-ℕ zero-ℕ = inl star linear-leq-ℕ zero-ℕ (succ-ℕ n) = inl star linear-leq-ℕ (succ-ℕ m) zero-ℕ = inr star linear-leq-ℕ (succ-ℕ m) (succ-ℕ n) = linear-leq-ℕ m n ``` ### For any three natural numbers, there are three cases in how they can be ordered ```agda cases-order-three-elements-ℕ : (x y z : ℕ) → UU lzero cases-order-three-elements-ℕ x y z = ( ( leq-ℕ x y × leq-ℕ y z) + ( leq-ℕ x z × leq-ℕ z y)) + ( ( ( leq-ℕ y z × leq-ℕ z x) + ( leq-ℕ y x × leq-ℕ x z)) + ( ( leq-ℕ z x × leq-ℕ x y) + ( leq-ℕ z y × leq-ℕ y x))) order-three-elements-ℕ : (x y z : ℕ) → cases-order-three-elements-ℕ x y z order-three-elements-ℕ zero-ℕ zero-ℕ zero-ℕ = inl (inl (pair star star)) order-three-elements-ℕ zero-ℕ zero-ℕ (succ-ℕ z) = inl (inl (pair star star)) order-three-elements-ℕ zero-ℕ (succ-ℕ y) zero-ℕ = inl (inr (pair star star)) order-three-elements-ℕ zero-ℕ (succ-ℕ y) (succ-ℕ z) = inl (map-coprod (pair star) (pair star) (linear-leq-ℕ y z)) order-three-elements-ℕ (succ-ℕ x) zero-ℕ zero-ℕ = inr (inl (inl (pair star star))) order-three-elements-ℕ (succ-ℕ x) zero-ℕ (succ-ℕ z) = inr (inl (map-coprod (pair star) (pair star) (linear-leq-ℕ z x))) order-three-elements-ℕ (succ-ℕ x) (succ-ℕ y) zero-ℕ = inr (inr (map-coprod (pair star) (pair star) (linear-leq-ℕ x y))) order-three-elements-ℕ (succ-ℕ x) (succ-ℕ y) (succ-ℕ z) = order-three-elements-ℕ x y z ``` ### Zero is less than or equal to any natural number ```agda leq-zero-ℕ : (n : ℕ) → zero-ℕ ≤-ℕ n leq-zero-ℕ n = star ``` ### Any natural number less than zero is zero ```agda is-zero-leq-zero-ℕ : (x : ℕ) → x ≤-ℕ zero-ℕ → is-zero-ℕ x is-zero-leq-zero-ℕ zero-ℕ star = refl is-zero-leq-zero-ℕ' : (x : ℕ) → x ≤-ℕ zero-ℕ → is-zero-ℕ' x is-zero-leq-zero-ℕ' zero-ℕ star = refl ``` ### Any number is nonzero natural number if it is at least `1` ```agda leq-one-is-nonzero-ℕ : (x : ℕ) → is-nonzero-ℕ x → leq-ℕ 1 x leq-one-is-nonzero-ℕ zero-ℕ H = ex-falso (H refl) leq-one-is-nonzero-ℕ (succ-ℕ x) H = star is-nonzero-leq-one-ℕ : (x : ℕ) → leq-ℕ 1 x → is-nonzero-ℕ x is-nonzero-leq-one-ℕ .zero-ℕ () refl ``` ### Any natural number is less than or equal to its own successor ```agda succ-leq-ℕ : (n : ℕ) → n ≤-ℕ (succ-ℕ n) succ-leq-ℕ zero-ℕ = star succ-leq-ℕ (succ-ℕ n) = succ-leq-ℕ n ``` ### An natural number less than `n+1` is either less than `n` or it is `n+1` ```agda decide-leq-succ-ℕ : (m n : ℕ) → m ≤-ℕ (succ-ℕ n) → (m ≤-ℕ n) + (m = succ-ℕ n) decide-leq-succ-ℕ zero-ℕ zero-ℕ l = inl star decide-leq-succ-ℕ zero-ℕ (succ-ℕ n) l = inl star decide-leq-succ-ℕ (succ-ℕ m) zero-ℕ l = inr (ap succ-ℕ (is-zero-leq-zero-ℕ m l)) decide-leq-succ-ℕ (succ-ℕ m) (succ-ℕ n) l = map-coprod id (ap succ-ℕ) (decide-leq-succ-ℕ m n l) ``` ### If `m` is less than `n`, then it is less than `n+1` ```agda preserves-leq-succ-ℕ : (m n : ℕ) → m ≤-ℕ n → m ≤-ℕ (succ-ℕ n) preserves-leq-succ-ℕ m n p = transitive-leq-ℕ m n (succ-ℕ n) (succ-leq-ℕ n) p ``` ### The successor of `n` is not less than or equal to `n` ```agda neg-succ-leq-ℕ : (n : ℕ) → ¬ (leq-ℕ (succ-ℕ n) n) neg-succ-leq-ℕ zero-ℕ = id neg-succ-leq-ℕ (succ-ℕ n) = neg-succ-leq-ℕ n ``` ### If `m ≤ n + 1` then either `m ≤ n` or `m = n + 1` ```agda cases-leq-succ-ℕ : {m n : ℕ} → leq-ℕ m (succ-ℕ n) → (leq-ℕ m n) + (m = succ-ℕ n) cases-leq-succ-ℕ {zero-ℕ} {n} star = inl star cases-leq-succ-ℕ {succ-ℕ m} {zero-ℕ} p = inr (ap succ-ℕ (antisymmetric-leq-ℕ m zero-ℕ p star)) cases-leq-succ-ℕ {succ-ℕ m} {succ-ℕ n} p = map-coprod id (ap succ-ℕ) (cases-leq-succ-ℕ p) cases-leq-succ-reflexive-leq-ℕ : {n : ℕ} → cases-leq-succ-ℕ {succ-ℕ n} {n} (refl-leq-ℕ n) = inr refl cases-leq-succ-reflexive-leq-ℕ {zero-ℕ} = refl cases-leq-succ-reflexive-leq-ℕ {succ-ℕ n} = ap (map-coprod id (ap succ-ℕ)) cases-leq-succ-reflexive-leq-ℕ ``` ### `m ≤ n` if and only if `n + 1 ≰ m` ```agda contradiction-leq-ℕ : (m n : ℕ) → m ≤-ℕ n → ¬ ((succ-ℕ n) ≤-ℕ m) contradiction-leq-ℕ (succ-ℕ m) (succ-ℕ n) H K = contradiction-leq-ℕ m n H K contradiction-leq-ℕ' : (m n : ℕ) → (succ-ℕ n) ≤-ℕ m → ¬ (m ≤-ℕ n) contradiction-leq-ℕ' m n K H = contradiction-leq-ℕ m n H K ``` ### Addition preserves inequality ```agda left-law-leq-add-ℕ : (k m n : ℕ) → m ≤-ℕ n → (m +ℕ k) ≤-ℕ (n +ℕ k) left-law-leq-add-ℕ zero-ℕ m n = id left-law-leq-add-ℕ (succ-ℕ k) m n H = left-law-leq-add-ℕ k m n H right-law-leq-add-ℕ : (k m n : ℕ) → m ≤-ℕ n → (k +ℕ m) ≤-ℕ (k +ℕ n) right-law-leq-add-ℕ k m n H = concatenate-eq-leq-eq-ℕ ( commutative-add-ℕ k m) ( left-law-leq-add-ℕ k m n H) ( commutative-add-ℕ n k) preserves-leq-add-ℕ : {m m' n n' : ℕ} → m ≤-ℕ m' → n ≤-ℕ n' → (m +ℕ n) ≤-ℕ (m' +ℕ n') preserves-leq-add-ℕ {m} {m'} {n} {n'} H K = transitive-leq-ℕ ( m +ℕ n) ( m' +ℕ n) ( m' +ℕ n') ( right-law-leq-add-ℕ m' n n' K) ( left-law-leq-add-ℕ n m m' H) ``` ### Addition reflects the ordering on ℕ ```agda reflects-order-add-ℕ : (k m n : ℕ) → (m +ℕ k) ≤-ℕ (n +ℕ k) → m ≤-ℕ n reflects-order-add-ℕ zero-ℕ m n = id reflects-order-add-ℕ (succ-ℕ k) m n = reflects-order-add-ℕ k m n reflects-order-add-ℕ' : (k m n : ℕ) → (k +ℕ m) ≤-ℕ (k +ℕ n) → m ≤-ℕ n reflects-order-add-ℕ' k m n H = reflects-order-add-ℕ k m n ( concatenate-eq-leq-eq-ℕ ( commutative-add-ℕ m k) ( H) ( commutative-add-ℕ k n)) ``` ### `m ≤ m + n` for any two natural numbers `m` and `n` ```agda leq-add-ℕ : (m n : ℕ) → m ≤-ℕ (m +ℕ n) leq-add-ℕ m zero-ℕ = refl-leq-ℕ m leq-add-ℕ m (succ-ℕ n) = transitive-leq-ℕ ( m) ( m +ℕ n) ( succ-ℕ (m +ℕ n)) ( succ-leq-ℕ (m +ℕ n)) ( leq-add-ℕ m n) leq-add-ℕ' : (m n : ℕ) → m ≤-ℕ (n +ℕ m) leq-add-ℕ' m n = concatenate-leq-eq-ℕ m (leq-add-ℕ m n) (commutative-add-ℕ m n) ``` ### We have `n ≤ m` if and only if there is a number `l` such that `l+n=m` ```agda subtraction-leq-ℕ : (n m : ℕ) → n ≤-ℕ m → Σ ℕ (λ l → l +ℕ n = m) subtraction-leq-ℕ zero-ℕ m p = pair m refl subtraction-leq-ℕ (succ-ℕ n) (succ-ℕ m) p = pair (pr1 P) (ap succ-ℕ (pr2 P)) where P : Σ ℕ (λ l' → l' +ℕ n = m) P = subtraction-leq-ℕ n m p leq-subtraction-ℕ : (n m l : ℕ) → l +ℕ n = m → n ≤-ℕ m leq-subtraction-ℕ zero-ℕ m l p = leq-zero-ℕ m leq-subtraction-ℕ (succ-ℕ n) (succ-ℕ m) l p = leq-subtraction-ℕ n m l (is-injective-succ-ℕ p) ``` ### Multiplication preserves the ordering on ℕ ```agda preserves-order-mul-ℕ : (k m n : ℕ) → m ≤-ℕ n → (m *ℕ k) ≤-ℕ (n *ℕ k) preserves-order-mul-ℕ k zero-ℕ n p = star preserves-order-mul-ℕ k (succ-ℕ m) (succ-ℕ n) p = left-law-leq-add-ℕ k ( m *ℕ k) ( n *ℕ k) ( preserves-order-mul-ℕ k m n p) preserves-order-mul-ℕ' : (k m n : ℕ) → m ≤-ℕ n → (k *ℕ m) ≤-ℕ (k *ℕ n) preserves-order-mul-ℕ' k m n H = concatenate-eq-leq-eq-ℕ ( commutative-mul-ℕ k m) ( preserves-order-mul-ℕ k m n H) ( commutative-mul-ℕ n k) ``` ### Multiplication preserves inequality ```agda preserves-leq-mul-ℕ : (m m' n n' : ℕ) → m ≤-ℕ m' → n ≤-ℕ n' → (m *ℕ n) ≤-ℕ (m' *ℕ n') preserves-leq-mul-ℕ m m' n n' H K = transitive-leq-ℕ ( m *ℕ n) ( m' *ℕ n) ( m' *ℕ n') ( preserves-order-mul-ℕ' m' n n' K) ( preserves-order-mul-ℕ n m m' H) ``` ### Multiplication by a nonzero element reflects the ordering on ℕ ```agda reflects-order-mul-ℕ : (k m n : ℕ) → (m *ℕ (succ-ℕ k)) ≤-ℕ (n *ℕ (succ-ℕ k)) → m ≤-ℕ n reflects-order-mul-ℕ k zero-ℕ n p = star reflects-order-mul-ℕ k (succ-ℕ m) (succ-ℕ n) p = reflects-order-mul-ℕ k m n ( reflects-order-add-ℕ ( succ-ℕ k) ( m *ℕ (succ-ℕ k)) ( n *ℕ (succ-ℕ k)) ( p)) reflects-order-mul-ℕ' : (k m n : ℕ) → ((succ-ℕ k) *ℕ m) ≤-ℕ ((succ-ℕ k) *ℕ n) → m ≤-ℕ n reflects-order-mul-ℕ' k m n H = reflects-order-mul-ℕ k m n ( concatenate-eq-leq-eq-ℕ ( commutative-mul-ℕ m (succ-ℕ k)) ( H) ( commutative-mul-ℕ (succ-ℕ k) n)) ``` ### Any number `x` is less than a nonzero multiple of itself ```agda leq-mul-ℕ : (k x : ℕ) → x ≤-ℕ (x *ℕ (succ-ℕ k)) leq-mul-ℕ k x = concatenate-eq-leq-ℕ ( x *ℕ (succ-ℕ k)) ( inv (right-unit-law-mul-ℕ x)) ( preserves-order-mul-ℕ' x 1 (succ-ℕ k) (leq-zero-ℕ k)) leq-mul-ℕ' : (k x : ℕ) → x ≤-ℕ ((succ-ℕ k) *ℕ x) leq-mul-ℕ' k x = concatenate-leq-eq-ℕ x ( leq-mul-ℕ k x) ( commutative-mul-ℕ x (succ-ℕ k)) leq-mul-is-nonzero-ℕ : (k x : ℕ) → is-nonzero-ℕ k → x ≤-ℕ (x *ℕ k) leq-mul-is-nonzero-ℕ k x H with is-successor-is-nonzero-ℕ H ... | pair l refl = leq-mul-ℕ l x leq-mul-is-nonzero-ℕ' : (k x : ℕ) → is-nonzero-ℕ k → x ≤-ℕ (k *ℕ x) leq-mul-is-nonzero-ℕ' k x H with is-successor-is-nonzero-ℕ H ... | pair l refl = leq-mul-ℕ' l x ``` ## See also - Strict inequality of the natural numbers is defined in [`strict-inequality-natural-numbers`](elementary-number-theory.strict-inequality-natural-numbers.md)