{-# OPTIONS --without-K --rewriting #-}
open import elementary-number-theory.natural-numbers
open import foundation.dependent-pair-types
open import foundation.embeddings
open import foundation.empty-types
open import foundation.equivalences
open import foundation.fibers-of-maps
open import foundation.functoriality-dependent-pair-types
open import foundation.propositional-maps
open import foundation.truncated-maps
open import foundation.type-arithmetic-empty-type
open import foundation.universe-levels
open import foundation.univalence
open import order-theory.well-founded-orders
open import functor.n-slice
open import notation hiding (sup)
module fixed-point.empty-set {i j} (n : ℕ)
(V : UU j) (fixed-point-V : V ≃ T-[ n ] i V) where
open import fixed-point.core n V fixed-point-V
open import e-structure.property.unordered-tupling ∈-structure-V
∅ : V
∅ = sup (raise-empty i ,
raise-ex-falso i ,
is-trunc-map-is-prop-map _
(is-prop-map-is-emb
(is-emb-map-emb (raise-ex-falso-emb i))))
empty-set : EmptySet
pr1 empty-set = ∅
pr2 empty-set x =
equivalence-reasoning
x ∈ ∅
≃ fiber (raise-ex-falso i) x by equiv-eq (∈-sup x)
≃ Σ empty (λ s → ex-falso s == x) by equiv-Σ-equiv-base
(λ s → ex-falso s == x)
(inv-equiv (compute-raise-empty i))
≃ empty by left-absorption-Σ (λ s → ex-falso s == x)
open empty-set.properties empty-set public