# Precomposition of functions into subuniverses ```agda module foundation.precomposition-functions-into-subuniverses where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.truncation-levels open import foundation.universe-levels open import foundation-core.contractible-maps open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.precomposition-functions open import foundation-core.propositions open import foundation-core.retractions open import foundation-core.sections open import foundation-core.sets open import foundation-core.truncated-types ``` </details> ## Theorem ### A map between structured types is an equivalence if precomposition of functions into structured types by that map is an equivalence ```agda module _ {l1 l2 : Level} (α : Level → Level) (P : {l : Level} → UU l → UU (α l)) (A : Σ (UU l1) (P {l1})) (B : Σ (UU l2) (P {l2})) (f : pr1 A → pr1 B) where universal-property-equiv-structured-type : UUω universal-property-equiv-structured-type = {l : Level} (C : Σ (UU l) (P {l})) → is-equiv (precomp f (pr1 C)) map-inv-is-equiv-precomp-structured-type : universal-property-equiv-structured-type → pr1 B → pr1 A map-inv-is-equiv-precomp-structured-type H = pr1 (center (is-contr-map-is-equiv (H A) id)) is-section-map-inv-is-equiv-precomp-structured-type : (H : universal-property-equiv-structured-type) → is-section f (map-inv-is-equiv-precomp-structured-type H) is-section-map-inv-is-equiv-precomp-structured-type H = htpy-eq ( ap ( pr1) ( eq-is-contr' ( is-contr-map-is-equiv (H B) f) ( ( f ∘ (pr1 (center (is-contr-map-is-equiv (H A) id)))) , ( ap ( λ (g : pr1 A → pr1 A) → f ∘ g) ( pr2 (center (is-contr-map-is-equiv (H A) id))))) ( id , refl))) is-retraction-map-inv-is-equiv-precomp-structured-type : (H : universal-property-equiv-structured-type) → is-retraction f (map-inv-is-equiv-precomp-structured-type H) is-retraction-map-inv-is-equiv-precomp-structured-type H = htpy-eq (pr2 (center (is-contr-map-is-equiv (H A) id))) abstract is-equiv-is-equiv-precomp-structured-type : universal-property-equiv-structured-type → is-equiv f is-equiv-is-equiv-precomp-structured-type H = is-equiv-is-invertible ( map-inv-is-equiv-precomp-structured-type H) ( is-section-map-inv-is-equiv-precomp-structured-type H) ( is-retraction-map-inv-is-equiv-precomp-structured-type H) ``` ## Corollaries ### A map between propositions is an equivalence if precomposition of functions into propositions by that map is an equivalence ```agda module _ {l1 l2 : Level} (P : Prop l1) (Q : Prop l2) (f : type-Prop P → type-Prop Q) where universal-property-equiv-Prop : UUω universal-property-equiv-Prop = {l : Level} (R : Prop l) → is-equiv (precomp f (type-Prop R)) is-equiv-is-equiv-precomp-Prop : universal-property-equiv-Prop → is-equiv f is-equiv-is-equiv-precomp-Prop = is-equiv-is-equiv-precomp-structured-type (λ l → l) is-prop P Q f ``` ### A map between sets is an equivalence if precomposition of functions into sets by that map is an equivalence ```agda module _ {l1 l2 : Level} (A : Set l1) (B : Set l2) (f : type-Set A → type-Set B) where universal-property-equiv-Set : UUω universal-property-equiv-Set = {l : Level} (C : Set l) → is-equiv (precomp f (type-Set C)) is-equiv-is-equiv-precomp-Set : universal-property-equiv-Set → is-equiv f is-equiv-is-equiv-precomp-Set = is-equiv-is-equiv-precomp-structured-type (λ l → l) is-set A B f ``` ### A map between truncated types is an equivalence if precomposition of functions into truncated types by that map is an equivalence ```agda module _ {l1 l2 : Level} (k : 𝕋) (A : Truncated-Type l1 k) (B : Truncated-Type l2 k) (f : type-Truncated-Type A → type-Truncated-Type B) where universal-property-equiv-Truncated-Type : UUω universal-property-equiv-Truncated-Type = {l : Level} (C : Truncated-Type l k) → is-equiv (precomp f (type-Truncated-Type C)) is-equiv-is-equiv-precomp-Truncated-Type : universal-property-equiv-Truncated-Type → is-equiv f is-equiv-is-equiv-precomp-Truncated-Type = is-equiv-is-equiv-precomp-structured-type (λ l → l) (is-trunc k) A B f ```