# Subuniverses ```agda module foundation.subuniverses where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.equality-dependent-function-types open import foundation.equivalences open import foundation.fundamental-theorem-of-identity-types open import foundation.subtype-identity-principle open import foundation.univalence open import foundation.universe-levels open import foundation-core.contractible-types open import foundation-core.embeddings open import foundation-core.fibers-of-maps open import foundation-core.functoriality-dependent-pair-types open import foundation-core.identity-types open import foundation-core.propositions open import foundation-core.subtypes open import foundation-core.torsorial-type-families open import foundation-core.transport-along-identifications ``` </details> ## Idea **Subuniverses** are [subtypes](foundation-core.subtypes.md) of the universe. ## Definitions ### Subuniverses ```agda is-subuniverse : {l1 l2 : Level} (P : UU l1 → UU l2) → UU ((lsuc l1) ⊔ l2) is-subuniverse P = is-subtype P subuniverse : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) subuniverse l1 l2 = subtype l2 (UU l1) is-subtype-subuniverse : {l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) → is-prop (is-in-subtype P X) is-subtype-subuniverse P X = is-prop-is-in-subtype P X module _ {l1 l2 : Level} (P : subuniverse l1 l2) where type-subuniverse : UU (lsuc l1 ⊔ l2) type-subuniverse = type-subtype P is-in-subuniverse : UU l1 → UU l2 is-in-subuniverse = is-in-subtype P is-prop-is-in-subuniverse : (X : UU l1) → is-prop (is-in-subuniverse X) is-prop-is-in-subuniverse = is-prop-is-in-subtype P inclusion-subuniverse : type-subuniverse → UU l1 inclusion-subuniverse = inclusion-subtype P is-in-subuniverse-inclusion-subuniverse : (X : type-subuniverse) → is-in-subuniverse (inclusion-subuniverse X) is-in-subuniverse-inclusion-subuniverse = pr2 is-emb-inclusion-subuniverse : is-emb inclusion-subuniverse is-emb-inclusion-subuniverse = is-emb-inclusion-subtype P emb-inclusion-subuniverse : type-subuniverse ↪ UU l1 emb-inclusion-subuniverse = emb-subtype P ``` ### Maps in a subuniverse ```agda is-in-subuniverse-map : {l1 l2 l3 : Level} (P : subuniverse (l1 ⊔ l2) l3) {A : UU l1} {B : UU l2} → (A → B) → UU (l2 ⊔ l3) is-in-subuniverse-map P {A} {B} f = (b : B) → is-in-subuniverse P (fiber f b) ``` ### The predicate of essentially being in a subuniverse ```agda module _ {l1 l2 : Level} (P : subuniverse l1 l2) where is-essentially-in-subuniverse : {l3 : Level} (X : UU l3) → UU (lsuc l1 ⊔ l2 ⊔ l3) is-essentially-in-subuniverse X = Σ (type-subuniverse P) (λ Y → inclusion-subuniverse P Y ≃ X) is-prop-is-essentially-in-subuniverse : {l3 : Level} (X : UU l3) → is-prop (is-essentially-in-subuniverse X) is-prop-is-essentially-in-subuniverse X = is-prop-is-proof-irrelevant ( λ ((X' , p) , e) → is-torsorial-Eq-subtype ( is-contr-equiv' ( Σ (UU _) (λ T → T ≃ X')) ( equiv-tot (equiv-postcomp-equiv e)) ( is-torsorial-equiv' X')) ( is-prop-is-in-subuniverse P) ( X') ( e) ( p)) is-essentially-in-subuniverse-Prop : {l3 : Level} (X : UU l3) → Prop (lsuc l1 ⊔ l2 ⊔ l3) pr1 (is-essentially-in-subuniverse-Prop X) = is-essentially-in-subuniverse X pr2 (is-essentially-in-subuniverse-Prop X) = is-prop-is-essentially-in-subuniverse X ``` ## Properties ### Subuniverses are closed under equivalences ```agda module _ {l1 l2 : Level} (P : subuniverse l1 l2) {X Y : UU l1} where is-in-subuniverse-equiv : X ≃ Y → is-in-subuniverse P X → is-in-subuniverse P Y is-in-subuniverse-equiv e = tr (is-in-subuniverse P) (eq-equiv X Y e) is-in-subuniverse-equiv' : X ≃ Y → is-in-subuniverse P Y → is-in-subuniverse P X is-in-subuniverse-equiv' e = tr (is-in-subuniverse P) (inv (eq-equiv X Y e)) ``` ### Characterization of the identity type of subuniverses ```agda module _ {l1 l2 : Level} (P : subuniverse l1 l2) where equiv-subuniverse : (X Y : type-subuniverse P) → UU l1 equiv-subuniverse X Y = (pr1 X) ≃ (pr1 Y) equiv-eq-subuniverse : (X Y : type-subuniverse P) → X = Y → equiv-subuniverse X Y equiv-eq-subuniverse X .X refl = id-equiv abstract is-torsorial-equiv-subuniverse : (X : type-subuniverse P) → is-torsorial (λ Y → equiv-subuniverse X Y) is-torsorial-equiv-subuniverse (X , p) = is-torsorial-Eq-subtype ( is-torsorial-equiv X) ( is-subtype-subuniverse P) ( X) ( id-equiv) ( p) is-torsorial-equiv-subuniverse' : (X : type-subuniverse P) → is-torsorial (λ Y → equiv-subuniverse Y X) is-torsorial-equiv-subuniverse' (X , p) = is-torsorial-Eq-subtype ( is-torsorial-equiv' X) ( is-subtype-subuniverse P) ( X) ( id-equiv) ( p) abstract is-equiv-equiv-eq-subuniverse : (X Y : type-subuniverse P) → is-equiv (equiv-eq-subuniverse X Y) is-equiv-equiv-eq-subuniverse X = fundamental-theorem-id ( is-torsorial-equiv-subuniverse X) ( equiv-eq-subuniverse X) extensionality-subuniverse : (X Y : type-subuniverse P) → (X = Y) ≃ equiv-subuniverse X Y pr1 (extensionality-subuniverse X Y) = equiv-eq-subuniverse X Y pr2 (extensionality-subuniverse X Y) = is-equiv-equiv-eq-subuniverse X Y eq-equiv-subuniverse : {X Y : type-subuniverse P} → equiv-subuniverse X Y → X = Y eq-equiv-subuniverse {X} {Y} = map-inv-is-equiv (is-equiv-equiv-eq-subuniverse X Y) compute-eq-equiv-id-equiv-subuniverse : {X : type-subuniverse P} → eq-equiv-subuniverse {X} {X} (id-equiv {A = pr1 X}) = refl compute-eq-equiv-id-equiv-subuniverse = is-retraction-map-inv-equiv (extensionality-subuniverse _ _) refl ``` ### Equivalences of families of types in a subuniverse ```agda fam-subuniverse : {l1 l2 l3 : Level} (P : subuniverse l1 l2) (X : UU l3) → UU (lsuc l1 ⊔ l2 ⊔ l3) fam-subuniverse P X = X → type-subuniverse P module _ {l1 l2 l3 : Level} (P : subuniverse l1 l2) {X : UU l3} where equiv-fam-subuniverse : (Y Z : fam-subuniverse P X) → UU (l1 ⊔ l3) equiv-fam-subuniverse Y Z = (x : X) → equiv-subuniverse P (Y x) (Z x) id-equiv-fam-subuniverse : (Y : fam-subuniverse P X) → equiv-fam-subuniverse Y Y id-equiv-fam-subuniverse Y x = id-equiv is-torsorial-equiv-fam-subuniverse : (Y : fam-subuniverse P X) → is-torsorial (equiv-fam-subuniverse Y) is-torsorial-equiv-fam-subuniverse Y = is-torsorial-Eq-Π ( λ x → equiv-subuniverse P (Y x)) ( λ x → is-torsorial-equiv-subuniverse P (Y x)) equiv-eq-fam-subuniverse : (Y Z : fam-subuniverse P X) → Y = Z → equiv-fam-subuniverse Y Z equiv-eq-fam-subuniverse Y .Y refl = id-equiv-fam-subuniverse Y is-equiv-equiv-eq-fam-subuniverse : (Y Z : fam-subuniverse P X) → is-equiv (equiv-eq-fam-subuniverse Y Z) is-equiv-equiv-eq-fam-subuniverse Y = fundamental-theorem-id ( is-torsorial-equiv-fam-subuniverse Y) ( equiv-eq-fam-subuniverse Y) extensionality-fam-subuniverse : (Y Z : fam-subuniverse P X) → (Y = Z) ≃ equiv-fam-subuniverse Y Z pr1 (extensionality-fam-subuniverse Y Z) = equiv-eq-fam-subuniverse Y Z pr2 (extensionality-fam-subuniverse Y Z) = is-equiv-equiv-eq-fam-subuniverse Y Z eq-equiv-fam-subuniverse : (Y Z : fam-subuniverse P X) → equiv-fam-subuniverse Y Z → (Y = Z) eq-equiv-fam-subuniverse Y Z = map-inv-is-equiv (is-equiv-equiv-eq-fam-subuniverse Y Z) ``` ## See also - [Σ-closed subuniverses](foundation.sigma-closed-subuniverses.md)