# Equality of coproduct types ```agda module foundation.equality-coproduct-types where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.fundamental-theorem-of-identity-types open import foundation.negated-equality open import foundation.universe-levels open import foundation-core.contractible-types open import foundation-core.coproduct-types open import foundation-core.embeddings open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.sets open import foundation-core.torsorial-type-families open import foundation-core.truncated-types open import foundation-core.truncation-levels ``` </details> ## Idea In order to construct an identification `Id x y` in a coproduct `coprod A B`, both `x` and `y` must be of the form `inl _` or of the form `inr _`. If that is the case, then an identification can be constructed by constructin an identification in A or in B, according to the case. This leads to the characterization of identity types of coproducts. ## Definition ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where data Eq-coprod : A + B → A + B → UU (l1 ⊔ l2) where Eq-eq-coprod-inl : {x y : A} → x = y → Eq-coprod (inl x) (inl y) Eq-eq-coprod-inr : {x y : B} → x = y → Eq-coprod (inr x) (inr y) ``` ## Properties ### The type `Eq-coprod x y` is equivalent to `Id x y` We will use the fundamental theorem of identity types. ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where refl-Eq-coprod : (x : A + B) → Eq-coprod x x refl-Eq-coprod (inl x) = Eq-eq-coprod-inl refl refl-Eq-coprod (inr x) = Eq-eq-coprod-inr refl Eq-eq-coprod : (x y : A + B) → x = y → Eq-coprod x y Eq-eq-coprod x .x refl = refl-Eq-coprod x eq-Eq-coprod : (x y : A + B) → Eq-coprod x y → x = y eq-Eq-coprod .(inl x) .(inl x) (Eq-eq-coprod-inl {x} {.x} refl) = refl eq-Eq-coprod .(inr x) .(inr x) (Eq-eq-coprod-inr {x} {.x} refl) = refl is-torsorial-Eq-coprod : (x : A + B) → is-torsorial (Eq-coprod x) pr1 (pr1 (is-torsorial-Eq-coprod (inl x))) = inl x pr2 (pr1 (is-torsorial-Eq-coprod (inl x))) = Eq-eq-coprod-inl refl pr2 ( is-torsorial-Eq-coprod (inl x)) ( pair (inl .x) (Eq-eq-coprod-inl refl)) = refl pr1 (pr1 (is-torsorial-Eq-coprod (inr x))) = inr x pr2 (pr1 (is-torsorial-Eq-coprod (inr x))) = Eq-eq-coprod-inr refl pr2 ( is-torsorial-Eq-coprod (inr x)) ( pair .(inr x) (Eq-eq-coprod-inr refl)) = refl is-equiv-Eq-eq-coprod : (x y : A + B) → is-equiv (Eq-eq-coprod x y) is-equiv-Eq-eq-coprod x = fundamental-theorem-id ( is-torsorial-Eq-coprod x) ( Eq-eq-coprod x) extensionality-coprod : (x y : A + B) → (x = y) ≃ Eq-coprod x y pr1 (extensionality-coprod x y) = Eq-eq-coprod x y pr2 (extensionality-coprod x y) = is-equiv-Eq-eq-coprod x y ``` Now we use the characterization of the identity type to obtain the desired equivalences. ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where module _ (x y : A) where map-compute-Eq-coprod-inl-inl : Eq-coprod {B = B} (inl x) (inl y) → (x = y) map-compute-Eq-coprod-inl-inl (Eq-eq-coprod-inl p) = p is-section-Eq-eq-coprod-inl : (map-compute-Eq-coprod-inl-inl ∘ Eq-eq-coprod-inl) ~ id is-section-Eq-eq-coprod-inl p = refl is-retraction-Eq-eq-coprod-inl : (Eq-eq-coprod-inl ∘ map-compute-Eq-coprod-inl-inl) ~ id is-retraction-Eq-eq-coprod-inl (Eq-eq-coprod-inl p) = refl is-equiv-map-compute-Eq-coprod-inl-inl : is-equiv map-compute-Eq-coprod-inl-inl is-equiv-map-compute-Eq-coprod-inl-inl = is-equiv-is-invertible ( Eq-eq-coprod-inl) ( is-section-Eq-eq-coprod-inl) ( is-retraction-Eq-eq-coprod-inl) compute-Eq-coprod-inl-inl : Eq-coprod (inl x) (inl y) ≃ (x = y) pr1 compute-Eq-coprod-inl-inl = map-compute-Eq-coprod-inl-inl pr2 compute-Eq-coprod-inl-inl = is-equiv-map-compute-Eq-coprod-inl-inl compute-eq-coprod-inl-inl : Id {A = A + B} (inl x) (inl y) ≃ (x = y) compute-eq-coprod-inl-inl = compute-Eq-coprod-inl-inl ∘e extensionality-coprod (inl x) (inl y) map-compute-eq-coprod-inl-inl : Id {A = A + B} (inl x) (inl y) → x = y map-compute-eq-coprod-inl-inl = map-equiv compute-eq-coprod-inl-inl module _ (x : A) (y : B) where map-compute-Eq-coprod-inl-inr : Eq-coprod (inl x) (inr y) → empty map-compute-Eq-coprod-inl-inr () is-equiv-map-compute-Eq-coprod-inl-inr : is-equiv map-compute-Eq-coprod-inl-inr is-equiv-map-compute-Eq-coprod-inl-inr = is-equiv-is-empty' map-compute-Eq-coprod-inl-inr compute-Eq-coprod-inl-inr : Eq-coprod (inl x) (inr y) ≃ empty pr1 compute-Eq-coprod-inl-inr = map-compute-Eq-coprod-inl-inr pr2 compute-Eq-coprod-inl-inr = is-equiv-map-compute-Eq-coprod-inl-inr compute-eq-coprod-inl-inr : Id {A = A + B} (inl x) (inr y) ≃ empty compute-eq-coprod-inl-inr = compute-Eq-coprod-inl-inr ∘e extensionality-coprod (inl x) (inr y) is-empty-eq-coprod-inl-inr : is-empty (Id {A = A + B} (inl x) (inr y)) is-empty-eq-coprod-inl-inr = map-equiv compute-eq-coprod-inl-inr module _ (x : B) (y : A) where map-compute-Eq-coprod-inr-inl : Eq-coprod (inr x) (inl y) → empty map-compute-Eq-coprod-inr-inl () is-equiv-map-compute-Eq-coprod-inr-inl : is-equiv map-compute-Eq-coprod-inr-inl is-equiv-map-compute-Eq-coprod-inr-inl = is-equiv-is-empty' map-compute-Eq-coprod-inr-inl compute-Eq-coprod-inr-inl : Eq-coprod (inr x) (inl y) ≃ empty pr1 compute-Eq-coprod-inr-inl = map-compute-Eq-coprod-inr-inl pr2 compute-Eq-coprod-inr-inl = is-equiv-map-compute-Eq-coprod-inr-inl compute-eq-coprod-inr-inl : Id {A = A + B} (inr x) (inl y) ≃ empty compute-eq-coprod-inr-inl = compute-Eq-coprod-inr-inl ∘e extensionality-coprod (inr x) (inl y) is-empty-eq-coprod-inr-inl : is-empty (Id {A = A + B} (inr x) (inl y)) is-empty-eq-coprod-inr-inl = map-equiv compute-eq-coprod-inr-inl module _ (x y : B) where map-compute-Eq-coprod-inr-inr : Eq-coprod {A = A} (inr x) (inr y) → x = y map-compute-Eq-coprod-inr-inr (Eq-eq-coprod-inr p) = p is-section-Eq-eq-coprod-inr : (map-compute-Eq-coprod-inr-inr ∘ Eq-eq-coprod-inr) ~ id is-section-Eq-eq-coprod-inr p = refl is-retraction-Eq-eq-coprod-inr : (Eq-eq-coprod-inr ∘ map-compute-Eq-coprod-inr-inr) ~ id is-retraction-Eq-eq-coprod-inr (Eq-eq-coprod-inr p) = refl is-equiv-map-compute-Eq-coprod-inr-inr : is-equiv map-compute-Eq-coprod-inr-inr is-equiv-map-compute-Eq-coprod-inr-inr = is-equiv-is-invertible ( Eq-eq-coprod-inr) ( is-section-Eq-eq-coprod-inr) ( is-retraction-Eq-eq-coprod-inr) compute-Eq-coprod-inr-inr : Eq-coprod (inr x) (inr y) ≃ (x = y) pr1 compute-Eq-coprod-inr-inr = map-compute-Eq-coprod-inr-inr pr2 compute-Eq-coprod-inr-inr = is-equiv-map-compute-Eq-coprod-inr-inr compute-eq-coprod-inr-inr : Id {A = A + B} (inr x) (inr y) ≃ (x = y) compute-eq-coprod-inr-inr = compute-Eq-coprod-inr-inr ∘e extensionality-coprod (inr x) (inr y) map-compute-eq-coprod-inr-inr : Id {A = A + B} (inr x) (inr y) → x = y map-compute-eq-coprod-inr-inr = map-equiv compute-eq-coprod-inr-inr ``` ### The left and right inclusions into a coproduct are embeddings ```agda module _ {l1 l2 : Level} (A : UU l1) (B : UU l2) where abstract is-emb-inl : is-emb (inl {A = A} {B = B}) is-emb-inl x = fundamental-theorem-id ( is-contr-equiv ( Σ A (Id x)) ( equiv-tot (compute-eq-coprod-inl-inl x)) ( is-torsorial-path x)) ( λ y → ap inl) emb-inl : A ↪ (A + B) pr1 emb-inl = inl pr2 emb-inl = is-emb-inl abstract is-emb-inr : is-emb (inr {A = A} {B = B}) is-emb-inr x = fundamental-theorem-id ( is-contr-equiv ( Σ B (Id x)) ( equiv-tot (compute-eq-coprod-inr-inr x)) ( is-torsorial-path x)) ( λ y → ap inr) emb-inr : B ↪ (A + B) pr1 emb-inr = inr pr2 emb-inr = is-emb-inr ``` ### A map `A + B → C` defined by maps `f : A → C` and `B → C` is an embedding if both `f` and `g` are embeddings and they don't overlap ```agda module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {f : A → C} {g : B → C} where is-emb-coprod : is-emb f → is-emb g → ((a : A) (b : B) → f a ≠ g b) → is-emb (ind-coprod (λ x → C) f g) is-emb-coprod H K L (inl a) (inl a') = is-equiv-right-map-triangle ( ap f) ( ap (ind-coprod (λ x → C) f g)) ( ap inl) ( λ p → ap-comp (ind-coprod (λ x → C) f g) inl p) ( H a a') ( is-emb-inl A B a a') is-emb-coprod H K L (inl a) (inr b') = is-equiv-is-empty (ap (ind-coprod (λ x → C) f g)) (L a b') is-emb-coprod H K L (inr b) (inl a') = is-equiv-is-empty (ap (ind-coprod (λ x → C) f g)) (L a' b ∘ inv) is-emb-coprod H K L (inr b) (inr b') = is-equiv-right-map-triangle ( ap g) ( ap (ind-coprod (λ x → C) f g)) ( ap inr) ( λ p → ap-comp (ind-coprod (λ x → C) f g) inr p) ( K b b') ( is-emb-inr A B b b') ``` ### Coproducts of (k+2)-truncated types are (k+2)-truncated ```agda module _ {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} where abstract is-trunc-coprod : is-trunc (succ-𝕋 (succ-𝕋 k)) A → is-trunc (succ-𝕋 (succ-𝕋 k)) B → is-trunc (succ-𝕋 (succ-𝕋 k)) (A + B) is-trunc-coprod is-trunc-A is-trunc-B (inl x) (inl y) = is-trunc-equiv (succ-𝕋 k) ( x = y) ( compute-eq-coprod-inl-inl x y) ( is-trunc-A x y) is-trunc-coprod is-trunc-A is-trunc-B (inl x) (inr y) = is-trunc-is-empty k (is-empty-eq-coprod-inl-inr x y) is-trunc-coprod is-trunc-A is-trunc-B (inr x) (inl y) = is-trunc-is-empty k (is-empty-eq-coprod-inr-inl x y) is-trunc-coprod is-trunc-A is-trunc-B (inr x) (inr y) = is-trunc-equiv (succ-𝕋 k) ( x = y) ( compute-eq-coprod-inr-inr x y) ( is-trunc-B x y) ``` ### Coproducts of sets are sets ```agda abstract is-set-coprod : {l1 l2 : Level} {A : UU l1} {B : UU l2} → is-set A → is-set B → is-set (A + B) is-set-coprod = is-trunc-coprod neg-two-𝕋 coprod-Set : {l1 l2 : Level} (A : Set l1) (B : Set l2) → Set (l1 ⊔ l2) pr1 (coprod-Set (pair A is-set-A) (pair B is-set-B)) = A + B pr2 (coprod-Set (pair A is-set-A) (pair B is-set-B)) = is-set-coprod is-set-A is-set-B ``` ## See also - Equality proofs in coproduct types are characterized in [`foundation.equality-coproduct-types`](foundation.equality-coproduct-types.md). - Equality proofs in dependent pair types are characterized in [`foundation.equality-dependent-pair-types`](foundation.equality-dependent-pair-types.md).